高压直流(HVDC)系统的快速准确故障定位技术

IF 2.1 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Canadian Journal of Electrical and Computer Engineering Pub Date : 2022-12-09 DOI:10.1109/ICJECE.2022.3217262
Jude Inwumoh;Craig A. Baguley;Kosala Gunawardane
{"title":"高压直流(HVDC)系统的快速准确故障定位技术","authors":"Jude Inwumoh;Craig A. Baguley;Kosala Gunawardane","doi":"10.1109/ICJECE.2022.3217262","DOIUrl":null,"url":null,"abstract":"To minimize the outage time and costs associated with faults on high voltage direct current (HVdc) transmission lines it is critical to locate faults in an accurate and sufficiently fast manner. Current fault location techniques based on artificial intelligence (AI) are accurate but require fault data from rectifying and inverting ends. This necessitates a communications system and incurs high computational burdens. Therefore, a novel fault location technique is proposed that requires fault data only from one end, eliminating the need for a communication system. It employs support vector machine (SVM) algorithms to reduce the time needed to locate faults through fault classification. After classification, Gaussian process regression (GPR) is used for location identification. The proposed technique is tested under real time simulation conditions. The test results show the SVM can classify different fault types with an accuracy of 99.7%, while the GPR is able to locate faults within 0.5197 s with a root mean square error (RMSE) value of 6.52e−5%. The performance of the technique is further investigated under varying fault impedance levels. The results show the proposed technique is robust, even under high impedance fault conditions.","PeriodicalId":100619,"journal":{"name":"IEEE Canadian Journal of Electrical and Computer Engineering","volume":"45 4","pages":"383-393"},"PeriodicalIF":2.1000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fast and Accurate Fault Location Technique for High Voltage Direct Current (HVDC) Systems Une technique rapide et précise de localisation des défauts pour les systèmes de courant continu à haute tension (CCHT)\",\"authors\":\"Jude Inwumoh;Craig A. Baguley;Kosala Gunawardane\",\"doi\":\"10.1109/ICJECE.2022.3217262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To minimize the outage time and costs associated with faults on high voltage direct current (HVdc) transmission lines it is critical to locate faults in an accurate and sufficiently fast manner. Current fault location techniques based on artificial intelligence (AI) are accurate but require fault data from rectifying and inverting ends. This necessitates a communications system and incurs high computational burdens. Therefore, a novel fault location technique is proposed that requires fault data only from one end, eliminating the need for a communication system. It employs support vector machine (SVM) algorithms to reduce the time needed to locate faults through fault classification. After classification, Gaussian process regression (GPR) is used for location identification. The proposed technique is tested under real time simulation conditions. The test results show the SVM can classify different fault types with an accuracy of 99.7%, while the GPR is able to locate faults within 0.5197 s with a root mean square error (RMSE) value of 6.52e−5%. The performance of the technique is further investigated under varying fault impedance levels. The results show the proposed technique is robust, even under high impedance fault conditions.\",\"PeriodicalId\":100619,\"journal\":{\"name\":\"IEEE Canadian Journal of Electrical and Computer Engineering\",\"volume\":\"45 4\",\"pages\":\"383-393\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Canadian Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9978748/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Canadian Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9978748/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

为了最大限度地减少与高压直流输电线路故障相关的停电时间和成本,以准确和足够快的方式定位故障至关重要。目前基于人工智能(AI)的故障定位技术是准确的,但需要来自整流和逆变端的故障数据。这就需要一个通信系统,并带来高的计算负担。因此,提出了一种新的故障定位技术,该技术只需要来自一端的故障数据,从而消除了对通信系统的需求。它采用支持向量机(SVM)算法来减少通过故障分类定位故障所需的时间。分类后,使用高斯过程回归(GPR)进行位置识别。在实时仿真条件下对所提出的技术进行了测试。测试结果表明,支持向量机能够对不同的故障类型进行分类,准确率为99.7%,而探地雷达能够在0.5197s内定位故障,均方根误差(RMSE)值为6.52e−5%。进一步研究了该技术在不同故障阻抗水平下的性能。结果表明,即使在高阻抗故障条件下,所提出的技术也是稳健的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Fast and Accurate Fault Location Technique for High Voltage Direct Current (HVDC) Systems Une technique rapide et précise de localisation des défauts pour les systèmes de courant continu à haute tension (CCHT)
To minimize the outage time and costs associated with faults on high voltage direct current (HVdc) transmission lines it is critical to locate faults in an accurate and sufficiently fast manner. Current fault location techniques based on artificial intelligence (AI) are accurate but require fault data from rectifying and inverting ends. This necessitates a communications system and incurs high computational burdens. Therefore, a novel fault location technique is proposed that requires fault data only from one end, eliminating the need for a communication system. It employs support vector machine (SVM) algorithms to reduce the time needed to locate faults through fault classification. After classification, Gaussian process regression (GPR) is used for location identification. The proposed technique is tested under real time simulation conditions. The test results show the SVM can classify different fault types with an accuracy of 99.7%, while the GPR is able to locate faults within 0.5197 s with a root mean square error (RMSE) value of 6.52e−5%. The performance of the technique is further investigated under varying fault impedance levels. The results show the proposed technique is robust, even under high impedance fault conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Front Cover IEEE Canadian Journal of Electrical and Computer Engineering Green Electricity Share Enhancement Through Rooftop Solar PV System on Institutional Sheds Enhanced Validation of Intelligent Control Algorithms in AC Microgrids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1