关于协同交替CSIT的X网络的DoF:迈向综合通信和传感的一步

IF 2.1 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Canadian Journal of Electrical and Computer Engineering Pub Date : 2022-11-07 DOI:10.1109/ICJECE.2022.3195957
Ahmed Wagdy Shaban;Mohamed Seif;Tamer Khattab;Amr El-Keyi;Mohammed Nafie;Nizar Zorba
{"title":"关于协同交替CSIT的X网络的DoF:迈向综合通信和传感的一步","authors":"Ahmed Wagdy Shaban;Mohamed Seif;Tamer Khattab;Amr El-Keyi;Mohammed Nafie;Nizar Zorba","doi":"10.1109/ICJECE.2022.3195957","DOIUrl":null,"url":null,"abstract":"The coexistence of communication and sensing services in the next wireless communication systems, i.e., beyond 5G and 6G systems, revive the central role of interference management techniques such as interference alignment, coordinated multipoint transmission, and cell-free massive multiple-input–multiple-output (MIMO), in defeating interference and achieving the network capacity. In this article, we consider the \n<inline-formula> <tex-math>$K$ </tex-math></inline-formula>\n-user single-input–single-output (SISO) X-channel and its variants (\n<inline-formula> <tex-math>$2 \\times K$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$K \\times 2$ </tex-math></inline-formula>\n) in fast-fading environments. This can theoretically model many practical use cases for beyond 5G and 6G networks. For instance, it can model the case of having \n<inline-formula> <tex-math>$K$ </tex-math></inline-formula>\n cars communicating with another \n<inline-formula> <tex-math>$K$ </tex-math></inline-formula>\n cars, while former cars are sensing environment using the latter ones (in a cooperative, bistatic, and active approach) over the same time and frequency resources. We assume that the transmitters have access to synergistic alternating channel state information at the transmitter (CSIT) where it alternates between three states: perfect (P), delayed (D), and no-CSIT (N), and these states are associated with fractions of time denoted by \n<inline-formula> <tex-math>$\\lambda _{P}$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$\\lambda _{D}$ </tex-math></inline-formula>\n, and \n<inline-formula> <tex-math>$\\lambda _{N}$ </tex-math></inline-formula>\n, respectively. We develop novel degree-of-freedom (DoF) achievability schemes that exploit the synergy of the instantaneous CSIT and the delayed CSIT to retrospectively align interference in the subsequent channel uses. In particular, we show that the sum DoF of the \n<inline-formula> <tex-math>$K$ </tex-math></inline-formula>\n-user SISO X-channel is at least \n<inline-formula> <tex-math>${2K}/{K + 1}$ </tex-math></inline-formula>\n, using a two-phase transmission scheme over finite symbols channel extension and under a certain distribution of the CSIT availability of \n<inline-formula> <tex-math>$\\Lambda (\\lambda _{P}=({1}/{3}), \\lambda _{D}= ({1}/{3}), \\lambda _{N}=({1}/{3}))$ </tex-math></inline-formula>\n. This achievability result can be considered as a tight lower bound where it coincides with the best lower bound known for the same network but with partial output feedback instead of alternating CSIT. In addition, it shows that the role of synergistically alternating CSIT with distribution \n<inline-formula> <tex-math>$\\Lambda ({1}/{3},{1}/{3},{1}/{3})$ </tex-math></inline-formula>\n is equivalent to the one of the partial output feedback. Moreover, we show the optimality of the proposed two-phase-based scheme using a simple combinatorial proof. This establishes a DoF lower bound, which is strictly better than the best lower bound known for the case of delayed CSI for all values of \n<inline-formula> <tex-math>$K$ </tex-math></inline-formula>\n. Thus, the proposed schemes offer higher DoF gain in comparison to delayed CSIT and no-CSIT.","PeriodicalId":100619,"journal":{"name":"IEEE Canadian Journal of Electrical and Computer Engineering","volume":"45 3","pages":"199-214"},"PeriodicalIF":2.1000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9349829/9944186/09940485.pdf","citationCount":"0","resultStr":"{\"title\":\"On the DoF of X-Networks With Synergistic Alternating CSIT: A Step Towards Integrated Communication and Sensing\",\"authors\":\"Ahmed Wagdy Shaban;Mohamed Seif;Tamer Khattab;Amr El-Keyi;Mohammed Nafie;Nizar Zorba\",\"doi\":\"10.1109/ICJECE.2022.3195957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The coexistence of communication and sensing services in the next wireless communication systems, i.e., beyond 5G and 6G systems, revive the central role of interference management techniques such as interference alignment, coordinated multipoint transmission, and cell-free massive multiple-input–multiple-output (MIMO), in defeating interference and achieving the network capacity. In this article, we consider the \\n<inline-formula> <tex-math>$K$ </tex-math></inline-formula>\\n-user single-input–single-output (SISO) X-channel and its variants (\\n<inline-formula> <tex-math>$2 \\\\times K$ </tex-math></inline-formula>\\n and \\n<inline-formula> <tex-math>$K \\\\times 2$ </tex-math></inline-formula>\\n) in fast-fading environments. This can theoretically model many practical use cases for beyond 5G and 6G networks. For instance, it can model the case of having \\n<inline-formula> <tex-math>$K$ </tex-math></inline-formula>\\n cars communicating with another \\n<inline-formula> <tex-math>$K$ </tex-math></inline-formula>\\n cars, while former cars are sensing environment using the latter ones (in a cooperative, bistatic, and active approach) over the same time and frequency resources. We assume that the transmitters have access to synergistic alternating channel state information at the transmitter (CSIT) where it alternates between three states: perfect (P), delayed (D), and no-CSIT (N), and these states are associated with fractions of time denoted by \\n<inline-formula> <tex-math>$\\\\lambda _{P}$ </tex-math></inline-formula>\\n, \\n<inline-formula> <tex-math>$\\\\lambda _{D}$ </tex-math></inline-formula>\\n, and \\n<inline-formula> <tex-math>$\\\\lambda _{N}$ </tex-math></inline-formula>\\n, respectively. We develop novel degree-of-freedom (DoF) achievability schemes that exploit the synergy of the instantaneous CSIT and the delayed CSIT to retrospectively align interference in the subsequent channel uses. In particular, we show that the sum DoF of the \\n<inline-formula> <tex-math>$K$ </tex-math></inline-formula>\\n-user SISO X-channel is at least \\n<inline-formula> <tex-math>${2K}/{K + 1}$ </tex-math></inline-formula>\\n, using a two-phase transmission scheme over finite symbols channel extension and under a certain distribution of the CSIT availability of \\n<inline-formula> <tex-math>$\\\\Lambda (\\\\lambda _{P}=({1}/{3}), \\\\lambda _{D}= ({1}/{3}), \\\\lambda _{N}=({1}/{3}))$ </tex-math></inline-formula>\\n. This achievability result can be considered as a tight lower bound where it coincides with the best lower bound known for the same network but with partial output feedback instead of alternating CSIT. In addition, it shows that the role of synergistically alternating CSIT with distribution \\n<inline-formula> <tex-math>$\\\\Lambda ({1}/{3},{1}/{3},{1}/{3})$ </tex-math></inline-formula>\\n is equivalent to the one of the partial output feedback. Moreover, we show the optimality of the proposed two-phase-based scheme using a simple combinatorial proof. This establishes a DoF lower bound, which is strictly better than the best lower bound known for the case of delayed CSI for all values of \\n<inline-formula> <tex-math>$K$ </tex-math></inline-formula>\\n. Thus, the proposed schemes offer higher DoF gain in comparison to delayed CSIT and no-CSIT.\",\"PeriodicalId\":100619,\"journal\":{\"name\":\"IEEE Canadian Journal of Electrical and Computer Engineering\",\"volume\":\"45 3\",\"pages\":\"199-214\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/9349829/9944186/09940485.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Canadian Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9940485/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Canadian Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9940485/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

在下一代无线通信系统中,即5G和6G系统之外,通信和传感服务的共存,重新发挥了干扰管理技术的核心作用,如干扰对准、协调多点传输和无小区大规模多输入多输出(MIMO),在消除干扰和实现网络容量方面。在本文中,我们考虑了快速衰落环境中的$K$用户单输入单输出(SISO)X信道及其变体($2\times K$和$K\times 2$)。这可以在理论上为5G和6G网络之外的许多实际用例建模。例如,它可以对$K$汽车与另一$K$车辆通信的情况进行建模,而前一辆汽车在相同的时间和频率资源上使用后一辆汽车(以合作、双基地和主动方式)感知环境。我们假设发射机可以访问发射机(CSIT)处的协同交替信道状态信息,其中它在三种状态之间交替:完全(P)、延迟(D)和无CSIT(N),并且这些状态分别与由$\lambda_{P}$、$\lambda_{D}$和$\lambda _{N}$表示的时间分数相关联。我们开发了新的自由度(DoF)可实现性方案,该方案利用瞬时CSIT和延迟CSIT的协同作用,在随后的信道使用中回顾性地对准干扰。特别地,我们证明了$K$用户SISO X信道的和DoF至少为${2K}/{K+1}$,使用有限符号信道扩展上的两阶段传输方案,并且在$\Lambda(\Lambda_{P}=({1}/{3}),\Lambda_{D}=({1}/{3}。该可实现性结果可以被认为是紧下界,其中它与相同网络已知的最佳下界一致,但具有部分输出反馈而不是交替的CSIT。此外,它还表明,协同交替CSIT与分布$\Lambda({1}/{3},{1}/{3},{1}/{3})$的作用等效于部分输出反馈的作用。此外,我们使用一个简单的组合证明证明了所提出的基于两相的方案的最优性。这建立了DoF下界,该下界严格优于对于所有$K$值的延迟CSI的情况已知的最佳下界。因此,与延迟的CSIT和无CSIT相比,所提出的方案提供更高的DoF增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the DoF of X-Networks With Synergistic Alternating CSIT: A Step Towards Integrated Communication and Sensing
The coexistence of communication and sensing services in the next wireless communication systems, i.e., beyond 5G and 6G systems, revive the central role of interference management techniques such as interference alignment, coordinated multipoint transmission, and cell-free massive multiple-input–multiple-output (MIMO), in defeating interference and achieving the network capacity. In this article, we consider the $K$ -user single-input–single-output (SISO) X-channel and its variants ( $2 \times K$ and $K \times 2$ ) in fast-fading environments. This can theoretically model many practical use cases for beyond 5G and 6G networks. For instance, it can model the case of having $K$ cars communicating with another $K$ cars, while former cars are sensing environment using the latter ones (in a cooperative, bistatic, and active approach) over the same time and frequency resources. We assume that the transmitters have access to synergistic alternating channel state information at the transmitter (CSIT) where it alternates between three states: perfect (P), delayed (D), and no-CSIT (N), and these states are associated with fractions of time denoted by $\lambda _{P}$ , $\lambda _{D}$ , and $\lambda _{N}$ , respectively. We develop novel degree-of-freedom (DoF) achievability schemes that exploit the synergy of the instantaneous CSIT and the delayed CSIT to retrospectively align interference in the subsequent channel uses. In particular, we show that the sum DoF of the $K$ -user SISO X-channel is at least ${2K}/{K + 1}$ , using a two-phase transmission scheme over finite symbols channel extension and under a certain distribution of the CSIT availability of $\Lambda (\lambda _{P}=({1}/{3}), \lambda _{D}= ({1}/{3}), \lambda _{N}=({1}/{3}))$ . This achievability result can be considered as a tight lower bound where it coincides with the best lower bound known for the same network but with partial output feedback instead of alternating CSIT. In addition, it shows that the role of synergistically alternating CSIT with distribution $\Lambda ({1}/{3},{1}/{3},{1}/{3})$ is equivalent to the one of the partial output feedback. Moreover, we show the optimality of the proposed two-phase-based scheme using a simple combinatorial proof. This establishes a DoF lower bound, which is strictly better than the best lower bound known for the case of delayed CSI for all values of $K$ . Thus, the proposed schemes offer higher DoF gain in comparison to delayed CSIT and no-CSIT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Front Cover IEEE Canadian Journal of Electrical and Computer Engineering Green Electricity Share Enhancement Through Rooftop Solar PV System on Institutional Sheds Enhanced Validation of Intelligent Control Algorithms in AC Microgrids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1