混合动力汽车动力传动系统能量转换设计与分析

Q3 Physics and Astronomy Journal of Nano-and electronic Physics Pub Date : 2023-01-01 DOI:10.21272/jnep.15(3).03008
U. S, G. P., A. Manimaran, S. Parasuraman, T. Karthika, Selciya Selvan, D. Kumutha
{"title":"混合动力汽车动力传动系统能量转换设计与分析","authors":"U. S, G. P., A. Manimaran, S. Parasuraman, T. Karthika, Selciya Selvan, D. Kumutha","doi":"10.21272/jnep.15(3).03008","DOIUrl":null,"url":null,"abstract":"The electrified powertrain is the essential component of all these electric car systems. With the help of our power semiconductor products and intelligent control ICs, it is possible to optimize many targets simultaneously for lower system costs, higher power densities, more effective applications, and modular systems. A hybrid electric vehicle (HEV) is modeled and simulated using the MATLAB – Simulink environment in current research. A discussion of the most popular structures for realizing HEVs is suggested. An electric power motor, electronic power converters, and devices for energy storage are routinely given as part of several modeling processes. The most significant electrical and mechanical modeling results that defined the HEVs are given. This modeling approach is highly beneficial and appropriate for explaining power and automotive electronics. In this research article, the design goal is to offer efficient throttle movement, 0 % steady-state speed error, and to maintain a Selected Vehicle (SV) speed. Comparison research is conducted to determine the superiority of the optimal control approach to enhance fuel economy, decrease pollution, maximize driving safety, and lower manufacturing costs. The maximum power proposed in the hybrid electric vehicle train is 35,000 Watts, higher compared to the existing system of 32,000 Watts.","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Analysis of Energy Transition in Hybrid Electric Vehicle Power Train Systems\",\"authors\":\"U. S, G. P., A. Manimaran, S. Parasuraman, T. Karthika, Selciya Selvan, D. Kumutha\",\"doi\":\"10.21272/jnep.15(3).03008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrified powertrain is the essential component of all these electric car systems. With the help of our power semiconductor products and intelligent control ICs, it is possible to optimize many targets simultaneously for lower system costs, higher power densities, more effective applications, and modular systems. A hybrid electric vehicle (HEV) is modeled and simulated using the MATLAB – Simulink environment in current research. A discussion of the most popular structures for realizing HEVs is suggested. An electric power motor, electronic power converters, and devices for energy storage are routinely given as part of several modeling processes. The most significant electrical and mechanical modeling results that defined the HEVs are given. This modeling approach is highly beneficial and appropriate for explaining power and automotive electronics. In this research article, the design goal is to offer efficient throttle movement, 0 % steady-state speed error, and to maintain a Selected Vehicle (SV) speed. Comparison research is conducted to determine the superiority of the optimal control approach to enhance fuel economy, decrease pollution, maximize driving safety, and lower manufacturing costs. The maximum power proposed in the hybrid electric vehicle train is 35,000 Watts, higher compared to the existing system of 32,000 Watts.\",\"PeriodicalId\":16654,\"journal\":{\"name\":\"Journal of Nano-and electronic Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nano-and electronic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21272/jnep.15(3).03008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano-and electronic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21272/jnep.15(3).03008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

电气化动力系统是所有这些电动汽车系统的重要组成部分。借助我们的功率半导体产品和智能控制ic,可以同时优化多个目标,以实现更低的系统成本,更高的功率密度,更有效的应用和模块化系统。在当前的研究中,利用MATLAB - Simulink环境对混合动力汽车(HEV)进行建模和仿真。讨论了实现混合动力汽车的最流行的结构。作为几个建模过程的一部分,通常会给出电动马达、电子电源转换器和能量存储设备。给出了定义混合动力汽车的最重要的电气和力学建模结果。这种建模方法对解释电力和汽车电子非常有益和合适。在本研究中,设计目标是提供有效的油门运动,0%的稳态速度误差,并保持一个选定的车辆(SV)速度。通过对比研究,确定了最优控制方法在提高燃油经济性、减少污染、最大化驾驶安全性和降低制造成本方面的优越性。混合动力汽车列车的最大功率为35000瓦,高于现有系统的32000瓦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Analysis of Energy Transition in Hybrid Electric Vehicle Power Train Systems
The electrified powertrain is the essential component of all these electric car systems. With the help of our power semiconductor products and intelligent control ICs, it is possible to optimize many targets simultaneously for lower system costs, higher power densities, more effective applications, and modular systems. A hybrid electric vehicle (HEV) is modeled and simulated using the MATLAB – Simulink environment in current research. A discussion of the most popular structures for realizing HEVs is suggested. An electric power motor, electronic power converters, and devices for energy storage are routinely given as part of several modeling processes. The most significant electrical and mechanical modeling results that defined the HEVs are given. This modeling approach is highly beneficial and appropriate for explaining power and automotive electronics. In this research article, the design goal is to offer efficient throttle movement, 0 % steady-state speed error, and to maintain a Selected Vehicle (SV) speed. Comparison research is conducted to determine the superiority of the optimal control approach to enhance fuel economy, decrease pollution, maximize driving safety, and lower manufacturing costs. The maximum power proposed in the hybrid electric vehicle train is 35,000 Watts, higher compared to the existing system of 32,000 Watts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nano-and electronic Physics
Journal of Nano-and electronic Physics Materials Science-Materials Science (all)
CiteScore
1.40
自引率
0.00%
发文量
69
期刊最新文献
Numerical Investigation Including Mobility Model for the Performances of Piezoresistive Sensors Synthesis of Thin Films Based on Silver Sulfide in Air at Atmospheric Pressure in a Gas Discharge Planar n+-n-n+ Diode with Active Side Boundary on InP Substrate Laser-Induced Modification of the Morphology and Defect Structure of Heterostructures Based on Detector-Grade CdTe Crystals Electrical Conductivity of Composite Materials Based on n-InSe and Thermally Expanded Graphite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1