D. Rakshe, P. William, M. A. Jawale, A. B. Pawar, Sachin K. Korde, Neeta Deshpande
{"title":"用于能源应用的石墨烯基纳米材料的合成与表征","authors":"D. Rakshe, P. William, M. A. Jawale, A. B. Pawar, Sachin K. Korde, Neeta Deshpande","doi":"10.21272/jnep.15(3).03020","DOIUrl":null,"url":null,"abstract":"Due to the one-of-a-kind and one-of-a-kind qualities that it possesses, graphene is an appealing soft substance that may be utilized in a variety of applications. This review focuses on two significant issues that need to be resolved to make use of the notable properties of nanostructures based on graphene: The creation of graphene-based nanostructures with various well-defined structural variations is the initial of these problems, and effectively utilizing graphene-based nanoparticles as functional nanostructures in important idea or technologies is the second of these problems. Before the distinctive qualities of graphene-based nanoparticles can be completely exploited, each of these challenges must be resolved. In this critical analysis from the chemical and nanomaterials viewpoints, we provide a quick summary of recent significant developments in the creation of graphene-based nanomaterials. In this study, we also cover the synthesis, characterization, and applications of graphene nanomaterials in the disciplines of both energy and environmental pollution rehabilitation, including solar cells, lithium-ion batteries, supercapacitors, and the adsorption and degradation of pollutants from huge quantities of the aqueous medium. There is also a discussion of the most significant challenges and opportunities in the research materials.","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Synthesis and Characterization of Graphene Based Nanomaterials for Energy Applications\",\"authors\":\"D. Rakshe, P. William, M. A. Jawale, A. B. Pawar, Sachin K. Korde, Neeta Deshpande\",\"doi\":\"10.21272/jnep.15(3).03020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the one-of-a-kind and one-of-a-kind qualities that it possesses, graphene is an appealing soft substance that may be utilized in a variety of applications. This review focuses on two significant issues that need to be resolved to make use of the notable properties of nanostructures based on graphene: The creation of graphene-based nanostructures with various well-defined structural variations is the initial of these problems, and effectively utilizing graphene-based nanoparticles as functional nanostructures in important idea or technologies is the second of these problems. Before the distinctive qualities of graphene-based nanoparticles can be completely exploited, each of these challenges must be resolved. In this critical analysis from the chemical and nanomaterials viewpoints, we provide a quick summary of recent significant developments in the creation of graphene-based nanomaterials. In this study, we also cover the synthesis, characterization, and applications of graphene nanomaterials in the disciplines of both energy and environmental pollution rehabilitation, including solar cells, lithium-ion batteries, supercapacitors, and the adsorption and degradation of pollutants from huge quantities of the aqueous medium. There is also a discussion of the most significant challenges and opportunities in the research materials.\",\"PeriodicalId\":16654,\"journal\":{\"name\":\"Journal of Nano-and electronic Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nano-and electronic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21272/jnep.15(3).03020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano-and electronic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21272/jnep.15(3).03020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Synthesis and Characterization of Graphene Based Nanomaterials for Energy Applications
Due to the one-of-a-kind and one-of-a-kind qualities that it possesses, graphene is an appealing soft substance that may be utilized in a variety of applications. This review focuses on two significant issues that need to be resolved to make use of the notable properties of nanostructures based on graphene: The creation of graphene-based nanostructures with various well-defined structural variations is the initial of these problems, and effectively utilizing graphene-based nanoparticles as functional nanostructures in important idea or technologies is the second of these problems. Before the distinctive qualities of graphene-based nanoparticles can be completely exploited, each of these challenges must be resolved. In this critical analysis from the chemical and nanomaterials viewpoints, we provide a quick summary of recent significant developments in the creation of graphene-based nanomaterials. In this study, we also cover the synthesis, characterization, and applications of graphene nanomaterials in the disciplines of both energy and environmental pollution rehabilitation, including solar cells, lithium-ion batteries, supercapacitors, and the adsorption and degradation of pollutants from huge quantities of the aqueous medium. There is also a discussion of the most significant challenges and opportunities in the research materials.