Venkatesh Yepuri, Addala Satyanarayana, P. Ramachandramurthy
{"title":"溶胶-凝胶法合成用于光子和变压器的二氧化钛纳米粒子","authors":"Venkatesh Yepuri, Addala Satyanarayana, P. Ramachandramurthy","doi":"10.21272/jnep.15(3).03025","DOIUrl":null,"url":null,"abstract":"Titania nanoparticles have several industrial applications, including cosmetics, optical, photonic, and electrical devices. However, industrial production of these particles is difficult, complicated, and dependent on a variety of physical characteristics such as temperature and infrastructure availability. This research describes an instant industrial method for producing titania nanoparticles using a wet chemical sol-gel synthesis. X-ray diffractogram (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis of as-synthesized titania nanoparticles revealed a strong diffraction peak at Bragg angle 25 , which can be attributed to the titania anatase phase, and vibration bonds at 463 cm – 1 , which confirms the presence of titania. The morphology of these titania nanoparticles was examined using a field emission scanning electron microscope (FESEM), which determined the particle size to be around 37 nm. Using diffuse reflectance spectroscopy (DRS), the optical properties of the as-synthesized nanoparticles were studied, and their band gap was determined to be 3.37 eV. At room temperature, the dielectric constant and loss of titania nanoparticles were measured as a function of frequency. Additionally, titania particles were mixed into transformer oil to assess its dielectric breakdown strength for better insulating properties.","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sol-gel Synthesis of Titania Nanoparticles for Photonic and Transformer Applications\",\"authors\":\"Venkatesh Yepuri, Addala Satyanarayana, P. Ramachandramurthy\",\"doi\":\"10.21272/jnep.15(3).03025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Titania nanoparticles have several industrial applications, including cosmetics, optical, photonic, and electrical devices. However, industrial production of these particles is difficult, complicated, and dependent on a variety of physical characteristics such as temperature and infrastructure availability. This research describes an instant industrial method for producing titania nanoparticles using a wet chemical sol-gel synthesis. X-ray diffractogram (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis of as-synthesized titania nanoparticles revealed a strong diffraction peak at Bragg angle 25 , which can be attributed to the titania anatase phase, and vibration bonds at 463 cm – 1 , which confirms the presence of titania. The morphology of these titania nanoparticles was examined using a field emission scanning electron microscope (FESEM), which determined the particle size to be around 37 nm. Using diffuse reflectance spectroscopy (DRS), the optical properties of the as-synthesized nanoparticles were studied, and their band gap was determined to be 3.37 eV. At room temperature, the dielectric constant and loss of titania nanoparticles were measured as a function of frequency. Additionally, titania particles were mixed into transformer oil to assess its dielectric breakdown strength for better insulating properties.\",\"PeriodicalId\":16654,\"journal\":{\"name\":\"Journal of Nano-and electronic Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nano-and electronic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21272/jnep.15(3).03025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano-and electronic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21272/jnep.15(3).03025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
摘要
二氧化钛纳米粒子有许多工业应用,包括化妆品、光学、光子和电子设备。然而,这些颗粒的工业生产是困难的,复杂的,并且依赖于各种物理特性,如温度和基础设施的可用性。本研究描述了一种使用湿化学溶胶-凝胶合成法生产二氧化钛纳米颗粒的即时工业方法。通过x射线衍射(XRD)和傅里叶变换红外光谱(FTIR)对合成的二氧化钛纳米粒子进行分析,发现在Bragg角25阶处有很强的衍射峰,这可以归因于锐钛矿相,并且在463 cm - 1处有振动键,证实了二氧化钛的存在。利用场发射扫描电子显微镜(FESEM)检测了这些二氧化钛纳米颗粒的形貌,确定了颗粒尺寸约为37 nm。利用漫反射光谱(DRS)研究了合成的纳米粒子的光学性质,确定了其带隙为3.37 eV。在室温下,测量了纳米二氧化钛的介电常数和损耗随频率的变化。此外,将二氧化钛颗粒混合到变压器油中,以评估其介电击穿强度,以获得更好的绝缘性能。
Sol-gel Synthesis of Titania Nanoparticles for Photonic and Transformer Applications
Titania nanoparticles have several industrial applications, including cosmetics, optical, photonic, and electrical devices. However, industrial production of these particles is difficult, complicated, and dependent on a variety of physical characteristics such as temperature and infrastructure availability. This research describes an instant industrial method for producing titania nanoparticles using a wet chemical sol-gel synthesis. X-ray diffractogram (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis of as-synthesized titania nanoparticles revealed a strong diffraction peak at Bragg angle 25 , which can be attributed to the titania anatase phase, and vibration bonds at 463 cm – 1 , which confirms the presence of titania. The morphology of these titania nanoparticles was examined using a field emission scanning electron microscope (FESEM), which determined the particle size to be around 37 nm. Using diffuse reflectance spectroscopy (DRS), the optical properties of the as-synthesized nanoparticles were studied, and their band gap was determined to be 3.37 eV. At room temperature, the dielectric constant and loss of titania nanoparticles were measured as a function of frequency. Additionally, titania particles were mixed into transformer oil to assess its dielectric breakdown strength for better insulating properties.