Samantha J. Richardson, April Bai, A. Kulkarni, M. Moghaddam
{"title":"药物发现的效率:肝脏S9组分测定作为代谢稳定性的筛选","authors":"Samantha J. Richardson, April Bai, A. Kulkarni, M. Moghaddam","doi":"10.2174/1872312810666160223121836","DOIUrl":null,"url":null,"abstract":"Background: A rapid and comprehensive metabolic stability screen at the top of a drug discovery flow chart serves as an effective gate in eliminating low value compounds. This imparts a significant level of efficiency and saves valuable resources. While microsomes are amenable to high throughput automation and are cost effective, their enzymatic make-up is limited to that which is contained in endoplasmic reticulum, thereby informing only on Phase I metabolism. Lack of Phase II metabolism data can become a potential liability later in the process, adversely affecting discovery projects’ timelines and budget. Hepatocytes offer a full complement of metabolic enzymes and retain their cellular compartments, better representing liver metabolic function. However, hepatocyte screens are relatively expensive, labor intensive, and not easily automatable. Liver S9 fractions include Phase I and II metabolic enzymes, are relatively inexpensive, easy to use, and amenable to automation, making them a more appropriate screening system. We compare the data from the three systems and present the results. Results: Liver S9 and hepatocyte stability assays binned into the same category 70-84% of the time. Microsome and hepatocyte data were in agreement 73-82% of the time. The true rate for stability versus plasma clearance was 45% for hepatocytes and 43% for S9. Conclusion: In our opinion, replacing liver microsome and hepatocyte assays with S9 assay for high throughput metabolic screening purposes provides the combined benefit of comprehensive and high quality data at a reasonable expense for drug discovery programs.","PeriodicalId":11339,"journal":{"name":"Drug metabolism letters","volume":"31 1","pages":"83 - 90"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1872312810666160223121836","citationCount":"82","resultStr":"{\"title\":\"Efficiency in Drug Discovery: Liver S9 Fraction Assay As a Screen for Metabolic Stability\",\"authors\":\"Samantha J. Richardson, April Bai, A. Kulkarni, M. Moghaddam\",\"doi\":\"10.2174/1872312810666160223121836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: A rapid and comprehensive metabolic stability screen at the top of a drug discovery flow chart serves as an effective gate in eliminating low value compounds. This imparts a significant level of efficiency and saves valuable resources. While microsomes are amenable to high throughput automation and are cost effective, their enzymatic make-up is limited to that which is contained in endoplasmic reticulum, thereby informing only on Phase I metabolism. Lack of Phase II metabolism data can become a potential liability later in the process, adversely affecting discovery projects’ timelines and budget. Hepatocytes offer a full complement of metabolic enzymes and retain their cellular compartments, better representing liver metabolic function. However, hepatocyte screens are relatively expensive, labor intensive, and not easily automatable. Liver S9 fractions include Phase I and II metabolic enzymes, are relatively inexpensive, easy to use, and amenable to automation, making them a more appropriate screening system. We compare the data from the three systems and present the results. Results: Liver S9 and hepatocyte stability assays binned into the same category 70-84% of the time. Microsome and hepatocyte data were in agreement 73-82% of the time. The true rate for stability versus plasma clearance was 45% for hepatocytes and 43% for S9. Conclusion: In our opinion, replacing liver microsome and hepatocyte assays with S9 assay for high throughput metabolic screening purposes provides the combined benefit of comprehensive and high quality data at a reasonable expense for drug discovery programs.\",\"PeriodicalId\":11339,\"journal\":{\"name\":\"Drug metabolism letters\",\"volume\":\"31 1\",\"pages\":\"83 - 90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2174/1872312810666160223121836\",\"citationCount\":\"82\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug metabolism letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1872312810666160223121836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug metabolism letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1872312810666160223121836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficiency in Drug Discovery: Liver S9 Fraction Assay As a Screen for Metabolic Stability
Background: A rapid and comprehensive metabolic stability screen at the top of a drug discovery flow chart serves as an effective gate in eliminating low value compounds. This imparts a significant level of efficiency and saves valuable resources. While microsomes are amenable to high throughput automation and are cost effective, their enzymatic make-up is limited to that which is contained in endoplasmic reticulum, thereby informing only on Phase I metabolism. Lack of Phase II metabolism data can become a potential liability later in the process, adversely affecting discovery projects’ timelines and budget. Hepatocytes offer a full complement of metabolic enzymes and retain their cellular compartments, better representing liver metabolic function. However, hepatocyte screens are relatively expensive, labor intensive, and not easily automatable. Liver S9 fractions include Phase I and II metabolic enzymes, are relatively inexpensive, easy to use, and amenable to automation, making them a more appropriate screening system. We compare the data from the three systems and present the results. Results: Liver S9 and hepatocyte stability assays binned into the same category 70-84% of the time. Microsome and hepatocyte data were in agreement 73-82% of the time. The true rate for stability versus plasma clearance was 45% for hepatocytes and 43% for S9. Conclusion: In our opinion, replacing liver microsome and hepatocyte assays with S9 assay for high throughput metabolic screening purposes provides the combined benefit of comprehensive and high quality data at a reasonable expense for drug discovery programs.
期刊介绍:
Drug Metabolism Letters publishes letters and research articles on major advances in all areas of drug metabolism and disposition. The emphasis is on publishing quality papers very rapidly by taking full advantage of the Internet technology both for the submission and review of manuscripts. The journal covers the following areas: In vitro systems including CYP-450; enzyme induction and inhibition; drug-drug interactions and enzyme kinetics; pharmacokinetics, toxicokinetics, species scaling and extrapolations; P-glycoprotein and transport carriers; target organ toxicity and interindividual variability; drug metabolism and disposition studies; extrahepatic metabolism; phase I and phase II metabolism; recent developments for the identification of drug metabolites.