疟疾感染红细胞中蛋白激酶调节的内校正阴离子和有机渗透通道

Q3 Computer Science Open Bioinformatics Journal Pub Date : 2011-01-31 DOI:10.2174/1874196701104010010
G. Bouyer, Serge L. Y. Thomas, S. Egée
{"title":"疟疾感染红细胞中蛋白激酶调节的内校正阴离子和有机渗透通道","authors":"G. Bouyer, Serge L. Y. Thomas, S. Egée","doi":"10.2174/1874196701104010010","DOIUrl":null,"url":null,"abstract":"The intraerythrocytic amplification of the malaria parasite Plasmodium falciparum induces new pathways of solute permeability in the host cell's membrane. These pathways play a pivotal role in parasite development by supplying the parasite with nutrients, disposing of the parasite's metabolic waste and organic osmolytes, and adapting the host's electrolyte composition to the parasite's needs. During the last ten years, electrophysiological investigations strongly supported earlier evidence obtained by transport and pharmacological studies that this new permeability pathway, which is induced by the parasite in the host cell membrane, is constituted by anion-selective channels. This review surveys the evidences acquired using the patch-clamp technique and discuss the hypothesis that protein kinase A is an effector of the signalling pathway leading to the activation of endogenous channels upon infection.","PeriodicalId":38956,"journal":{"name":"Open Bioinformatics Journal","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Protein Kinase-Regulated Inwardly Rectifying Anion and Organic Osmolyte Channels in Malaria-Infected Erythrocytes\",\"authors\":\"G. Bouyer, Serge L. Y. Thomas, S. Egée\",\"doi\":\"10.2174/1874196701104010010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The intraerythrocytic amplification of the malaria parasite Plasmodium falciparum induces new pathways of solute permeability in the host cell's membrane. These pathways play a pivotal role in parasite development by supplying the parasite with nutrients, disposing of the parasite's metabolic waste and organic osmolytes, and adapting the host's electrolyte composition to the parasite's needs. During the last ten years, electrophysiological investigations strongly supported earlier evidence obtained by transport and pharmacological studies that this new permeability pathway, which is induced by the parasite in the host cell membrane, is constituted by anion-selective channels. This review surveys the evidences acquired using the patch-clamp technique and discuss the hypothesis that protein kinase A is an effector of the signalling pathway leading to the activation of endogenous channels upon infection.\",\"PeriodicalId\":38956,\"journal\":{\"name\":\"Open Bioinformatics Journal\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Bioinformatics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874196701104010010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Bioinformatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874196701104010010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

摘要

疟原虫恶性疟原虫的红细胞内扩增诱导宿主细胞膜溶质渗透的新途径。这些途径在寄生虫的发育过程中发挥着关键作用,为寄生虫提供营养,处理寄生虫的代谢废物和有机渗透物,并使宿主的电解质组成适应寄生虫的需要。近十年来,电生理研究有力地支持了早期转运和药理学研究的证据,即寄生虫在宿主细胞膜上诱导的这种新的渗透性途径是由阴离子选择通道构成的。本文综述了利用膜片钳技术获得的证据,并讨论了蛋白激酶A是导致内源性通道在感染时激活的信号通路的效应者的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Protein Kinase-Regulated Inwardly Rectifying Anion and Organic Osmolyte Channels in Malaria-Infected Erythrocytes
The intraerythrocytic amplification of the malaria parasite Plasmodium falciparum induces new pathways of solute permeability in the host cell's membrane. These pathways play a pivotal role in parasite development by supplying the parasite with nutrients, disposing of the parasite's metabolic waste and organic osmolytes, and adapting the host's electrolyte composition to the parasite's needs. During the last ten years, electrophysiological investigations strongly supported earlier evidence obtained by transport and pharmacological studies that this new permeability pathway, which is induced by the parasite in the host cell membrane, is constituted by anion-selective channels. This review surveys the evidences acquired using the patch-clamp technique and discuss the hypothesis that protein kinase A is an effector of the signalling pathway leading to the activation of endogenous channels upon infection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Bioinformatics Journal
Open Bioinformatics Journal Computer Science-Computer Science (miscellaneous)
CiteScore
2.40
自引率
0.00%
发文量
4
期刊介绍: The Open Bioinformatics Journal is an Open Access online journal, which publishes research articles, reviews/mini-reviews, letters, clinical trial studies and guest edited single topic issues in all areas of bioinformatics and computational biology. The coverage includes biomedicine, focusing on large data acquisition, analysis and curation, computational and statistical methods for the modeling and analysis of biological data, and descriptions of new algorithms and databases. The Open Bioinformatics Journal, a peer reviewed journal, is an important and reliable source of current information on the developments in the field. The emphasis will be on publishing quality articles rapidly and freely available worldwide.
期刊最新文献
Decision-making Support System for Predicting and Eliminating Malnutrition and Anemia Immunoinformatics Approach for the Design of Chimeric Vaccine Against Whitmore Disease A New Deep Learning Model based on Neuroimaging for Predicting Alzheimer's Disease Early Prediction of Covid-19 Samples from Chest X-ray Images using Deep Learning Approach Electronic Health Record (EHR) System Development for Study on EHR Data-based Early Prediction of Diabetes Using Machine Learning Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1