{"title":"稻田生态系统的生物多样性和复杂性:一个实证评估","authors":"Debal Deb","doi":"10.2174/1874213000902010112","DOIUrl":null,"url":null,"abstract":"Modern rice farms are characterized by the use of synthetic agrochemicals, which eliminate a large segment of biodiversity on-farm. In contrast, organic rice farms tend to preserve much of natural biodiversity. While biodiversity- productivity relationship in organic vs. chemicalised rice farms is contested, the relationship of on-farm biodiversity with food web structural properties and ecosystem services remains to be explored. To understand the functional significance of species richness and ecosystem complexity of rice farms, I examine here the architectural properties of rice food webs from West Bengal, based on replicated plots of folk variety (organic) and modern (chemicalised) rice systems. All rice food webs, constructed from observational data collected over three years, show prominent scale dependence of dietary links, link density, web height, diversity of natural enemies to pests, predator-pest ratio, and the numbers of omnivores and omnivory levels. Organic folk rice webs tend to have greater mean species richness, predator diversity, predator-pest ratio and chain length than modern rice farm webs, yet both systems show homogeneity of distribution of the web properties. Analyses of 16,400 computerized analog webs, following non-random rules of species association drawn on real-life, seasonally distinct rice food webs, validate the robustness of conclusions.","PeriodicalId":39335,"journal":{"name":"Open Ecology Journal","volume":"2 1","pages":"112-129"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Biodiversity and Complexity of Rice Farm Ecosystems: An Empirical Assessment\",\"authors\":\"Debal Deb\",\"doi\":\"10.2174/1874213000902010112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern rice farms are characterized by the use of synthetic agrochemicals, which eliminate a large segment of biodiversity on-farm. In contrast, organic rice farms tend to preserve much of natural biodiversity. While biodiversity- productivity relationship in organic vs. chemicalised rice farms is contested, the relationship of on-farm biodiversity with food web structural properties and ecosystem services remains to be explored. To understand the functional significance of species richness and ecosystem complexity of rice farms, I examine here the architectural properties of rice food webs from West Bengal, based on replicated plots of folk variety (organic) and modern (chemicalised) rice systems. All rice food webs, constructed from observational data collected over three years, show prominent scale dependence of dietary links, link density, web height, diversity of natural enemies to pests, predator-pest ratio, and the numbers of omnivores and omnivory levels. Organic folk rice webs tend to have greater mean species richness, predator diversity, predator-pest ratio and chain length than modern rice farm webs, yet both systems show homogeneity of distribution of the web properties. Analyses of 16,400 computerized analog webs, following non-random rules of species association drawn on real-life, seasonally distinct rice food webs, validate the robustness of conclusions.\",\"PeriodicalId\":39335,\"journal\":{\"name\":\"Open Ecology Journal\",\"volume\":\"2 1\",\"pages\":\"112-129\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Ecology Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874213000902010112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ecology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874213000902010112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
Biodiversity and Complexity of Rice Farm Ecosystems: An Empirical Assessment
Modern rice farms are characterized by the use of synthetic agrochemicals, which eliminate a large segment of biodiversity on-farm. In contrast, organic rice farms tend to preserve much of natural biodiversity. While biodiversity- productivity relationship in organic vs. chemicalised rice farms is contested, the relationship of on-farm biodiversity with food web structural properties and ecosystem services remains to be explored. To understand the functional significance of species richness and ecosystem complexity of rice farms, I examine here the architectural properties of rice food webs from West Bengal, based on replicated plots of folk variety (organic) and modern (chemicalised) rice systems. All rice food webs, constructed from observational data collected over three years, show prominent scale dependence of dietary links, link density, web height, diversity of natural enemies to pests, predator-pest ratio, and the numbers of omnivores and omnivory levels. Organic folk rice webs tend to have greater mean species richness, predator diversity, predator-pest ratio and chain length than modern rice farm webs, yet both systems show homogeneity of distribution of the web properties. Analyses of 16,400 computerized analog webs, following non-random rules of species association drawn on real-life, seasonally distinct rice food webs, validate the robustness of conclusions.
期刊介绍:
The Open Ecology Journal is an open access online journal which embraces the trans-disciplinary nature of ecology, seeking to publish original research articles, reviews, letters and guest edited single topic issues representing important scientific progress from all areas of ecology and its linkages to other fields. The journal also focuses on the basic principles of the natural environment and its conservation. Contributions may be based on any taxa, natural or artificial environments, biodiversity, spatial scales, temporal scales, and methods that advance this multi-faceted and dynamic science. The Open Ecology Journal also considers empirical and theoretical studies that promote the construction of a broadly applicable conceptual framework or that present rigorous tests or novel applications of ecological theory.