从能量梯度和自然选择到生态系统的生物多样性和稳定性

Q2 Environmental Science Open Ecology Journal Pub Date : 2010-11-01 DOI:10.2174/1874213001003010095
Bo Deng
{"title":"从能量梯度和自然选择到生态系统的生物多样性和稳定性","authors":"Bo Deng","doi":"10.2174/1874213001003010095","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to incorporate well-established ecological principles into a foodweb model consisting of four trophic levels --- abiotic resources, plants, herbivores, and carnivores. The underlining principles include Kimura's neutral theory of genetic evolution, Liebig's Law of the Minimum for plant growth, Holling's functionals for herbivore foraging and carnivore predation, the One-Life Rule for all organisms, and Lotka-Volterra's model for intra- and interspecific competitions. Numerical simulations of the model led to the following statistical findings: (a) particular foodwebs can give contradicting observations on biodiversity and productivity, in particular, all known functional forms -- - positive, negative, sigmoidal, and unimodal correlations are present in the model; (b) drifting stable equilibria should be expected for ecosystems regardless of their size; (c) resource abundance and specific competitions are the main determining factors for biodiversity, with intraspecific competition enhancing diversity while interspecific competition impeding diversity; (d) endangered species are expected always and loss in lower trophic endangered species are expected at trophication, i.e. the establishment of a higher trophic level of a community. These findings may shed lights on some ongoing debates on biodiversity. In particular, finding (a) implies that the diversity vs. ecosystems functioning debate is most likely the result of incompatible particular observations each cannot be generalized. In particular, general causality should not be expected between diversity and productivity. Finding (b) does not support May's theory that large ecosystems are inherently unstable nor Eton's theory that stability requires diversity. However, it lends a strong support to the energetic theory for the latitudinal diversity gradient. Finding (c) supports Darwin's observation on the effect of interspecific competition on diversity. Finding (d) implies that loss of diversity is inevitable with the appearance of a super species like the human race. Our method and result also suggest that although the evolution of particular species cannot be predicted, some general statistic patterns appear to persist. In addition to the aforementioned findings, these persisting patterns include: the trophic succession, the trophic biomass separation in orders of magnitude, the upper bounds in biodiversity in relationship to the intensities of specific competitions despite the enormous possible number of species allowed by genetic mutations.","PeriodicalId":39335,"journal":{"name":"Open Ecology Journal","volume":"3 1","pages":"95-110"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"From Energy Gradient and Natural Selection to Biodiversity and Stability of Ecosystems\",\"authors\":\"Bo Deng\",\"doi\":\"10.2174/1874213001003010095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to incorporate well-established ecological principles into a foodweb model consisting of four trophic levels --- abiotic resources, plants, herbivores, and carnivores. The underlining principles include Kimura's neutral theory of genetic evolution, Liebig's Law of the Minimum for plant growth, Holling's functionals for herbivore foraging and carnivore predation, the One-Life Rule for all organisms, and Lotka-Volterra's model for intra- and interspecific competitions. Numerical simulations of the model led to the following statistical findings: (a) particular foodwebs can give contradicting observations on biodiversity and productivity, in particular, all known functional forms -- - positive, negative, sigmoidal, and unimodal correlations are present in the model; (b) drifting stable equilibria should be expected for ecosystems regardless of their size; (c) resource abundance and specific competitions are the main determining factors for biodiversity, with intraspecific competition enhancing diversity while interspecific competition impeding diversity; (d) endangered species are expected always and loss in lower trophic endangered species are expected at trophication, i.e. the establishment of a higher trophic level of a community. These findings may shed lights on some ongoing debates on biodiversity. In particular, finding (a) implies that the diversity vs. ecosystems functioning debate is most likely the result of incompatible particular observations each cannot be generalized. In particular, general causality should not be expected between diversity and productivity. Finding (b) does not support May's theory that large ecosystems are inherently unstable nor Eton's theory that stability requires diversity. However, it lends a strong support to the energetic theory for the latitudinal diversity gradient. Finding (c) supports Darwin's observation on the effect of interspecific competition on diversity. Finding (d) implies that loss of diversity is inevitable with the appearance of a super species like the human race. Our method and result also suggest that although the evolution of particular species cannot be predicted, some general statistic patterns appear to persist. In addition to the aforementioned findings, these persisting patterns include: the trophic succession, the trophic biomass separation in orders of magnitude, the upper bounds in biodiversity in relationship to the intensities of specific competitions despite the enormous possible number of species allowed by genetic mutations.\",\"PeriodicalId\":39335,\"journal\":{\"name\":\"Open Ecology Journal\",\"volume\":\"3 1\",\"pages\":\"95-110\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Ecology Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874213001003010095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ecology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874213001003010095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 3

摘要

本文的目的是将完善的生态原则纳入一个由四个营养水平组成的食物网模型-非生物资源,植物,食草动物和食肉动物。主要的原则包括木村的遗传进化中性理论,李比希的植物生长最小值定律,霍林的食草动物觅食和食肉动物捕食功能,所有生物的单一生命法则,以及Lotka-Volterra的种内和种间竞争模型。对该模型的数值模拟得出了以下统计结果:(a)特定食物网可以给出与生物多样性和生产力相矛盾的观测结果,特别是所有已知的函数形式——模型中存在正、负、s型和单峰相关;(b)无论生态系统的大小如何,都应该预期会有漂移的稳定平衡;(c)资源丰度和种间竞争是生物多样性的主要决定因素,种内竞争促进多样性,种间竞争阻碍多样性;(d)在营养化过程中,即建立一个较高营养水平的群落时,预计会出现濒危物种,而低营养水平的濒危物种会出现损失。这些发现可能会对一些正在进行的关于生物多样性的争论有所启发。特别是,发现(a)表明,多样性与生态系统功能的争论很可能是不相容的特定观察结果的结果,每种观察结果都不能一概而论。特别是,不应期望多样性和生产力之间存在普遍的因果关系。发现(b)不支持梅的理论,即大型生态系统本质上是不稳定的,也不支持伊顿的理论,即稳定需要多样性。然而,它为纬度多样性梯度的能量理论提供了有力的支持。发现(c)支持达尔文关于种间竞争对多样性影响的观察。发现(d)意味着随着像人类这样的超级物种的出现,多样性的丧失是不可避免的。我们的方法和结果还表明,尽管特定物种的进化无法预测,但一些普遍的统计模式似乎持续存在。除上述发现外,这些持续模式还包括:营养演替,营养生物量的数量级分离,生物多样性与特定竞争强度的关系上限,尽管基因突变允许的物种数量可能很大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
From Energy Gradient and Natural Selection to Biodiversity and Stability of Ecosystems
The purpose of this paper is to incorporate well-established ecological principles into a foodweb model consisting of four trophic levels --- abiotic resources, plants, herbivores, and carnivores. The underlining principles include Kimura's neutral theory of genetic evolution, Liebig's Law of the Minimum for plant growth, Holling's functionals for herbivore foraging and carnivore predation, the One-Life Rule for all organisms, and Lotka-Volterra's model for intra- and interspecific competitions. Numerical simulations of the model led to the following statistical findings: (a) particular foodwebs can give contradicting observations on biodiversity and productivity, in particular, all known functional forms -- - positive, negative, sigmoidal, and unimodal correlations are present in the model; (b) drifting stable equilibria should be expected for ecosystems regardless of their size; (c) resource abundance and specific competitions are the main determining factors for biodiversity, with intraspecific competition enhancing diversity while interspecific competition impeding diversity; (d) endangered species are expected always and loss in lower trophic endangered species are expected at trophication, i.e. the establishment of a higher trophic level of a community. These findings may shed lights on some ongoing debates on biodiversity. In particular, finding (a) implies that the diversity vs. ecosystems functioning debate is most likely the result of incompatible particular observations each cannot be generalized. In particular, general causality should not be expected between diversity and productivity. Finding (b) does not support May's theory that large ecosystems are inherently unstable nor Eton's theory that stability requires diversity. However, it lends a strong support to the energetic theory for the latitudinal diversity gradient. Finding (c) supports Darwin's observation on the effect of interspecific competition on diversity. Finding (d) implies that loss of diversity is inevitable with the appearance of a super species like the human race. Our method and result also suggest that although the evolution of particular species cannot be predicted, some general statistic patterns appear to persist. In addition to the aforementioned findings, these persisting patterns include: the trophic succession, the trophic biomass separation in orders of magnitude, the upper bounds in biodiversity in relationship to the intensities of specific competitions despite the enormous possible number of species allowed by genetic mutations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Ecology Journal
Open Ecology Journal Environmental Science-Environmental Science (all)
自引率
0.00%
发文量
0
期刊介绍: The Open Ecology Journal is an open access online journal which embraces the trans-disciplinary nature of ecology, seeking to publish original research articles, reviews, letters and guest edited single topic issues representing important scientific progress from all areas of ecology and its linkages to other fields. The journal also focuses on the basic principles of the natural environment and its conservation. Contributions may be based on any taxa, natural or artificial environments, biodiversity, spatial scales, temporal scales, and methods that advance this multi-faceted and dynamic science. The Open Ecology Journal also considers empirical and theoretical studies that promote the construction of a broadly applicable conceptual framework or that present rigorous tests or novel applications of ecological theory.
期刊最新文献
ABUNDANCE OF INSECT POLLINATORS IN A MUSTARD FIELD AT DINAJPUR IN BANGLADESH DIETARY DICALCIUM PHOSPHATE SUPPLEMENTATION ENHANCES PRODUCTIVE AND REPRODUCTIVE PERFORMANCES OF CROSSBRED AND LOCAL DAIRY COWS RUGOSE SPIRALING WHITEFLY INFESTATION ON COCONUT: THREATS AND REMEDY ECO-FRIENDLY MANAGEMENT OF ANTHRACNOSE OF CHILI USING FORMULATED TRICHODERMA AND INDIGENOUS MEDICINAL PLANT MUNGBEAN VARIETIES EXPRESSED VARIATION IN MORPHOPHYSIOLOGICAL TRAITS AND YIELD UNDER WATER STRESS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1