Roman Bucher, J. Herrmann, Christof Schüepp, F. Herzog, M. Entling
{"title":"破碎景观中树木节肢动物的定殖取决于物种特征","authors":"Roman Bucher, J. Herrmann, Christof Schüepp, F. Herzog, M. Entling","doi":"10.2174/1874213001003010111","DOIUrl":null,"url":null,"abstract":"Effects of habitat fragmentation vary greatly between organisms. Traits such as dispersal mode and habitat preference may explain these differences. We predict that organisms with low dispersal abilities respond mainly to habitat isolation whereas aerial colonisers respond to the amount of suitable habitats at the landscape scale. To test these predictions 30 sites were chosen that varied independently in the level of isolation from woody habitats and in the percentage of woody habitats in 500 m circumference. At each site seven cherry trees were established. Overwintering arthropods were sampled using cardboard hides. Glue rings were attached around tree stems to distinguish between walking and aerial colonisers. As predicted for walking dispersers, earwig abundance was strongly affected by habitat isolation. In contrast, three species of ballooning spiders responded neither to glue rings nor to habitat isolation. Instead they were affected by habitat amount in accordance with their preferred habitats. These results strongly encourage the use of species traits to predict effects of landscape fragmentation on organisms. However, additional factors such as interactions between species groups need also to be taken into account.","PeriodicalId":39335,"journal":{"name":"Open Ecology Journal","volume":"3 1","pages":"111-117"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Arthropod Colonisation of Trees in Fragmented Landscapes Depends on Species Traits\",\"authors\":\"Roman Bucher, J. Herrmann, Christof Schüepp, F. Herzog, M. Entling\",\"doi\":\"10.2174/1874213001003010111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effects of habitat fragmentation vary greatly between organisms. Traits such as dispersal mode and habitat preference may explain these differences. We predict that organisms with low dispersal abilities respond mainly to habitat isolation whereas aerial colonisers respond to the amount of suitable habitats at the landscape scale. To test these predictions 30 sites were chosen that varied independently in the level of isolation from woody habitats and in the percentage of woody habitats in 500 m circumference. At each site seven cherry trees were established. Overwintering arthropods were sampled using cardboard hides. Glue rings were attached around tree stems to distinguish between walking and aerial colonisers. As predicted for walking dispersers, earwig abundance was strongly affected by habitat isolation. In contrast, three species of ballooning spiders responded neither to glue rings nor to habitat isolation. Instead they were affected by habitat amount in accordance with their preferred habitats. These results strongly encourage the use of species traits to predict effects of landscape fragmentation on organisms. However, additional factors such as interactions between species groups need also to be taken into account.\",\"PeriodicalId\":39335,\"journal\":{\"name\":\"Open Ecology Journal\",\"volume\":\"3 1\",\"pages\":\"111-117\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Ecology Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874213001003010111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ecology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874213001003010111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
Arthropod Colonisation of Trees in Fragmented Landscapes Depends on Species Traits
Effects of habitat fragmentation vary greatly between organisms. Traits such as dispersal mode and habitat preference may explain these differences. We predict that organisms with low dispersal abilities respond mainly to habitat isolation whereas aerial colonisers respond to the amount of suitable habitats at the landscape scale. To test these predictions 30 sites were chosen that varied independently in the level of isolation from woody habitats and in the percentage of woody habitats in 500 m circumference. At each site seven cherry trees were established. Overwintering arthropods were sampled using cardboard hides. Glue rings were attached around tree stems to distinguish between walking and aerial colonisers. As predicted for walking dispersers, earwig abundance was strongly affected by habitat isolation. In contrast, three species of ballooning spiders responded neither to glue rings nor to habitat isolation. Instead they were affected by habitat amount in accordance with their preferred habitats. These results strongly encourage the use of species traits to predict effects of landscape fragmentation on organisms. However, additional factors such as interactions between species groups need also to be taken into account.
期刊介绍:
The Open Ecology Journal is an open access online journal which embraces the trans-disciplinary nature of ecology, seeking to publish original research articles, reviews, letters and guest edited single topic issues representing important scientific progress from all areas of ecology and its linkages to other fields. The journal also focuses on the basic principles of the natural environment and its conservation. Contributions may be based on any taxa, natural or artificial environments, biodiversity, spatial scales, temporal scales, and methods that advance this multi-faceted and dynamic science. The Open Ecology Journal also considers empirical and theoretical studies that promote the construction of a broadly applicable conceptual framework or that present rigorous tests or novel applications of ecological theory.