火生态学的古生态学视角:对火态概念的再审视2009-09-02~!2009-11-09~!2010-03-05~!

Q2 Environmental Science Open Ecology Journal Pub Date : 2010-03-05 DOI:10.2174/1874213001003020006
C. Whitlock, P. Higuera, D. McWethy, C. Briles
{"title":"火生态学的古生态学视角:对火态概念的再审视2009-09-02~!2009-11-09~!2010-03-05~!","authors":"C. Whitlock, P. Higuera, D. McWethy, C. Briles","doi":"10.2174/1874213001003020006","DOIUrl":null,"url":null,"abstract":"Fire is well recognized as a key Earth system process, but its causes and influences vary greatly across spatial and temporal scales. The controls of fire are often portrayed as a set of superimposed triangles, with processes ranging from oxygen to weather to climate, combustion to fuel to vegetation, and local to landscape to regional drivers over broadening spatial and lengthening temporal scale. Most ecological studies and fire management plans consider the effects of fire-weather and fuels on local to sub-regional scales and time frames of years to decades. Fire reconstructions developed from high-resolution tree-ring records and lake-sediment data that span centuries to millennia offer unique insights about fire's role that cannot otherwise be obtained. Such records help disclose the historical range of variability in fire activity over the duration of a vegetation type; the role of large-scale changes of climate, such as seasonal changes in summer insolation; the consequences of major reorganizations in vegetation; and the influence of prehistoric human activity in different ecological settings. This paleoecological perspective suggests that fire-regime definitions, which focus on the characteristic frequency, size and intensity of fire and particular fuel types, should be reconceptualized to better include the controls of fire regimes over the duration of a particular biome. We suggest that approaches currently used to analyze fire regimes across multiple spatial scales should be employed to examine fire occurrence across multiple temporal scales. Such cross-scale patterns would better reveal the full variability of particular fire regimes and their controls, and provide relevant information for the types of fire regimes likely to occur in the future with projected climate and land-use change.","PeriodicalId":39335,"journal":{"name":"Open Ecology Journal","volume":"3 1","pages":"6-23"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"280","resultStr":"{\"title\":\"Paleoecological Perspectives on Fire Ecology: Revisiting the Fire-Regime Concept~!2009-09-02~!2009-11-09~!2010-03-05~!\",\"authors\":\"C. Whitlock, P. Higuera, D. McWethy, C. Briles\",\"doi\":\"10.2174/1874213001003020006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fire is well recognized as a key Earth system process, but its causes and influences vary greatly across spatial and temporal scales. The controls of fire are often portrayed as a set of superimposed triangles, with processes ranging from oxygen to weather to climate, combustion to fuel to vegetation, and local to landscape to regional drivers over broadening spatial and lengthening temporal scale. Most ecological studies and fire management plans consider the effects of fire-weather and fuels on local to sub-regional scales and time frames of years to decades. Fire reconstructions developed from high-resolution tree-ring records and lake-sediment data that span centuries to millennia offer unique insights about fire's role that cannot otherwise be obtained. Such records help disclose the historical range of variability in fire activity over the duration of a vegetation type; the role of large-scale changes of climate, such as seasonal changes in summer insolation; the consequences of major reorganizations in vegetation; and the influence of prehistoric human activity in different ecological settings. This paleoecological perspective suggests that fire-regime definitions, which focus on the characteristic frequency, size and intensity of fire and particular fuel types, should be reconceptualized to better include the controls of fire regimes over the duration of a particular biome. We suggest that approaches currently used to analyze fire regimes across multiple spatial scales should be employed to examine fire occurrence across multiple temporal scales. Such cross-scale patterns would better reveal the full variability of particular fire regimes and their controls, and provide relevant information for the types of fire regimes likely to occur in the future with projected climate and land-use change.\",\"PeriodicalId\":39335,\"journal\":{\"name\":\"Open Ecology Journal\",\"volume\":\"3 1\",\"pages\":\"6-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"280\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Ecology Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874213001003020006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ecology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874213001003020006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 280

摘要

火被公认为地球系统的一个关键过程,但其成因和影响在空间和时间尺度上差异很大。火的控制通常被描绘成一组叠加的三角形,其过程范围从氧气到天气到气候,从燃烧到燃料到植被,从地方到景观到区域驱动因素,扩大了空间和延长了时间尺度。大多数生态学研究和火灾管理计划考虑到火灾-天气和燃料在地方到次区域尺度和数年到数十年的时间框架上的影响。从跨越几个世纪到几千年的高分辨率树木年轮记录和湖泊沉积物数据中发展出来的火灾重建提供了关于火灾作用的独特见解,这是其他方法无法获得的。这些记录有助于揭示某一植被类型存续期间火灾活动的历史变化范围;大尺度气候变化的作用,如夏季日照的季节变化;植被重大重组的后果;以及史前人类活动对不同生态环境的影响。这种古生态学观点表明,关注火灾特征频率、大小和强度以及特定燃料类型的火情定义应该重新概念化,以更好地包括特定生物群系持续时间内对火情的控制。我们建议,目前用于跨空间尺度分析火灾制度的方法应用于跨时间尺度研究火灾发生。这种跨尺度模式将更好地揭示特定火情及其控制的全部变异性,并为未来可能发生的火情类型提供有关资料,预测气候和土地利用变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Paleoecological Perspectives on Fire Ecology: Revisiting the Fire-Regime Concept~!2009-09-02~!2009-11-09~!2010-03-05~!
Fire is well recognized as a key Earth system process, but its causes and influences vary greatly across spatial and temporal scales. The controls of fire are often portrayed as a set of superimposed triangles, with processes ranging from oxygen to weather to climate, combustion to fuel to vegetation, and local to landscape to regional drivers over broadening spatial and lengthening temporal scale. Most ecological studies and fire management plans consider the effects of fire-weather and fuels on local to sub-regional scales and time frames of years to decades. Fire reconstructions developed from high-resolution tree-ring records and lake-sediment data that span centuries to millennia offer unique insights about fire's role that cannot otherwise be obtained. Such records help disclose the historical range of variability in fire activity over the duration of a vegetation type; the role of large-scale changes of climate, such as seasonal changes in summer insolation; the consequences of major reorganizations in vegetation; and the influence of prehistoric human activity in different ecological settings. This paleoecological perspective suggests that fire-regime definitions, which focus on the characteristic frequency, size and intensity of fire and particular fuel types, should be reconceptualized to better include the controls of fire regimes over the duration of a particular biome. We suggest that approaches currently used to analyze fire regimes across multiple spatial scales should be employed to examine fire occurrence across multiple temporal scales. Such cross-scale patterns would better reveal the full variability of particular fire regimes and their controls, and provide relevant information for the types of fire regimes likely to occur in the future with projected climate and land-use change.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Ecology Journal
Open Ecology Journal Environmental Science-Environmental Science (all)
自引率
0.00%
发文量
0
期刊介绍: The Open Ecology Journal is an open access online journal which embraces the trans-disciplinary nature of ecology, seeking to publish original research articles, reviews, letters and guest edited single topic issues representing important scientific progress from all areas of ecology and its linkages to other fields. The journal also focuses on the basic principles of the natural environment and its conservation. Contributions may be based on any taxa, natural or artificial environments, biodiversity, spatial scales, temporal scales, and methods that advance this multi-faceted and dynamic science. The Open Ecology Journal also considers empirical and theoretical studies that promote the construction of a broadly applicable conceptual framework or that present rigorous tests or novel applications of ecological theory.
期刊最新文献
ABUNDANCE OF INSECT POLLINATORS IN A MUSTARD FIELD AT DINAJPUR IN BANGLADESH DIETARY DICALCIUM PHOSPHATE SUPPLEMENTATION ENHANCES PRODUCTIVE AND REPRODUCTIVE PERFORMANCES OF CROSSBRED AND LOCAL DAIRY COWS RUGOSE SPIRALING WHITEFLY INFESTATION ON COCONUT: THREATS AND REMEDY ECO-FRIENDLY MANAGEMENT OF ANTHRACNOSE OF CHILI USING FORMULATED TRICHODERMA AND INDIGENOUS MEDICINAL PLANT MUNGBEAN VARIETIES EXPRESSED VARIATION IN MORPHOPHYSIOLOGICAL TRAITS AND YIELD UNDER WATER STRESS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1