{"title":"温带淡水湿地复合体的多类群落结构:元群落的证据","authors":"J. McKenna","doi":"10.2174/1874213020130516002","DOIUrl":null,"url":null,"abstract":"Wetlands are ecologically valuable and complex systems that both link and buffer aquatic and terrestrial systems. Spatial aspects and metacommunity concepts help explain community structure and dynamics, but metacommunity dynamics have not been applied to multiple interacting classes of organisms in temperate wetlands. The aim of this study was to 1) quantify significant patterns of wetland community structure within a large wetland in Central New York, USA at a variety of scales and on several trophic levels in relation to key elements of the physical and biological environment, and 2) evaluate four paradigms of metacommunity dynamics that may explain that community structure. Data on assemblages of three major interacting community components, having different dispersal abilities (birds, fish, and invertebrates), and environmental conditions were collected from aquatic habitats of different size and connectivity. Analysis of diversity and composition in relation to a size-connectivity index (SCI) showed clear evidence of spatial or environmental influences, or both for all major taxa. Aquatic organisms formed distinct assemblages whose spatial arrangement and associated environmental conditions were consistent with one of the two spatially explicit metacommunity paradigms, Mass Effect, Species Sorting, or both. The study wetland was a relatively productive, metacommunity, populated by members of a post-glacial species pool, and maintained within three major habitat types, large pools connected to small ditch-like habitats, and isolated pools. Metacommunity dynamics differed by organism class, but habitat was clearly heterogeneous, eliminating Patch Dynamics and Neutral Models. Aerial insects showed little metacommunity dynamics, with a weak habitat condition link to the Species Sorting mechanism. Aquatic invertebrates and aquatic vertebrates showed evidence of both Mass Effect and Species Sorting, with strong environment influences emphasizing the latter; social behavior modified Species Sorting for aquatic birds. The multi-taxon approach revealed important couplings among wetland community components; active management of wetland habitat via altered water supply and connectivity may allow aquatic organisms to escape disturbance and recolonize habitat, but will likely change community structure. Controlled experiments on organism demographics and movements would help clarify the processes of community maintenance in this and other wetlands.","PeriodicalId":39335,"journal":{"name":"Open Ecology Journal","volume":"6 1","pages":"24-46"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-Class Community Structure within a Temperate FreshwaterWetland Complex: Evidence for the Metacommunity\",\"authors\":\"J. McKenna\",\"doi\":\"10.2174/1874213020130516002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wetlands are ecologically valuable and complex systems that both link and buffer aquatic and terrestrial systems. Spatial aspects and metacommunity concepts help explain community structure and dynamics, but metacommunity dynamics have not been applied to multiple interacting classes of organisms in temperate wetlands. The aim of this study was to 1) quantify significant patterns of wetland community structure within a large wetland in Central New York, USA at a variety of scales and on several trophic levels in relation to key elements of the physical and biological environment, and 2) evaluate four paradigms of metacommunity dynamics that may explain that community structure. Data on assemblages of three major interacting community components, having different dispersal abilities (birds, fish, and invertebrates), and environmental conditions were collected from aquatic habitats of different size and connectivity. Analysis of diversity and composition in relation to a size-connectivity index (SCI) showed clear evidence of spatial or environmental influences, or both for all major taxa. Aquatic organisms formed distinct assemblages whose spatial arrangement and associated environmental conditions were consistent with one of the two spatially explicit metacommunity paradigms, Mass Effect, Species Sorting, or both. The study wetland was a relatively productive, metacommunity, populated by members of a post-glacial species pool, and maintained within three major habitat types, large pools connected to small ditch-like habitats, and isolated pools. Metacommunity dynamics differed by organism class, but habitat was clearly heterogeneous, eliminating Patch Dynamics and Neutral Models. Aerial insects showed little metacommunity dynamics, with a weak habitat condition link to the Species Sorting mechanism. Aquatic invertebrates and aquatic vertebrates showed evidence of both Mass Effect and Species Sorting, with strong environment influences emphasizing the latter; social behavior modified Species Sorting for aquatic birds. The multi-taxon approach revealed important couplings among wetland community components; active management of wetland habitat via altered water supply and connectivity may allow aquatic organisms to escape disturbance and recolonize habitat, but will likely change community structure. Controlled experiments on organism demographics and movements would help clarify the processes of community maintenance in this and other wetlands.\",\"PeriodicalId\":39335,\"journal\":{\"name\":\"Open Ecology Journal\",\"volume\":\"6 1\",\"pages\":\"24-46\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Ecology Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874213020130516002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ecology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874213020130516002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
Multi-Class Community Structure within a Temperate FreshwaterWetland Complex: Evidence for the Metacommunity
Wetlands are ecologically valuable and complex systems that both link and buffer aquatic and terrestrial systems. Spatial aspects and metacommunity concepts help explain community structure and dynamics, but metacommunity dynamics have not been applied to multiple interacting classes of organisms in temperate wetlands. The aim of this study was to 1) quantify significant patterns of wetland community structure within a large wetland in Central New York, USA at a variety of scales and on several trophic levels in relation to key elements of the physical and biological environment, and 2) evaluate four paradigms of metacommunity dynamics that may explain that community structure. Data on assemblages of three major interacting community components, having different dispersal abilities (birds, fish, and invertebrates), and environmental conditions were collected from aquatic habitats of different size and connectivity. Analysis of diversity and composition in relation to a size-connectivity index (SCI) showed clear evidence of spatial or environmental influences, or both for all major taxa. Aquatic organisms formed distinct assemblages whose spatial arrangement and associated environmental conditions were consistent with one of the two spatially explicit metacommunity paradigms, Mass Effect, Species Sorting, or both. The study wetland was a relatively productive, metacommunity, populated by members of a post-glacial species pool, and maintained within three major habitat types, large pools connected to small ditch-like habitats, and isolated pools. Metacommunity dynamics differed by organism class, but habitat was clearly heterogeneous, eliminating Patch Dynamics and Neutral Models. Aerial insects showed little metacommunity dynamics, with a weak habitat condition link to the Species Sorting mechanism. Aquatic invertebrates and aquatic vertebrates showed evidence of both Mass Effect and Species Sorting, with strong environment influences emphasizing the latter; social behavior modified Species Sorting for aquatic birds. The multi-taxon approach revealed important couplings among wetland community components; active management of wetland habitat via altered water supply and connectivity may allow aquatic organisms to escape disturbance and recolonize habitat, but will likely change community structure. Controlled experiments on organism demographics and movements would help clarify the processes of community maintenance in this and other wetlands.
期刊介绍:
The Open Ecology Journal is an open access online journal which embraces the trans-disciplinary nature of ecology, seeking to publish original research articles, reviews, letters and guest edited single topic issues representing important scientific progress from all areas of ecology and its linkages to other fields. The journal also focuses on the basic principles of the natural environment and its conservation. Contributions may be based on any taxa, natural or artificial environments, biodiversity, spatial scales, temporal scales, and methods that advance this multi-faceted and dynamic science. The Open Ecology Journal also considers empirical and theoretical studies that promote the construction of a broadly applicable conceptual framework or that present rigorous tests or novel applications of ecological theory.