Mohamed Khalifa Boutahir;Yousef Farhaoui;Mourade Azrour;Imad Zeroual;Ahmad El Allaoui
{"title":"特征选择对直接法向辐照度预测的影响","authors":"Mohamed Khalifa Boutahir;Yousef Farhaoui;Mourade Azrour;Imad Zeroual;Ahmad El Allaoui","doi":"10.26599/BDMA.2022.9020003","DOIUrl":null,"url":null,"abstract":"Solar radiation is capable of producing heat, causing chemical reactions, or generating electricity. Thus, the amount of solar radiation at different times of the day must be determined to design and equip all solar systems. Moreover, it is necessary to have a thorough understanding of different solar radiation components, such as Direct Normal Irradiance (DNI), Diffuse Horizontal Irradiance (DHI), and Global Horizontal Irradiance (GHI). Unfortunately, measurements of solar radiation are not easily accessible for the majority of regions on the globe. This paper aims to develop a set of deep learning models through feature importance algorithms to predict the DNI data. The proposed models are based on historical data of meteorological parameters and solar radiation properties in a specific location of the region of Errachidia, Morocco, from January 1, 2017, to December 31, 2019, with an interval of 60 minutes. The findings demonstrated that feature selection approaches play a crucial role in forecasting of solar radiation accurately when compared with the available data.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"5 4","pages":"309-317"},"PeriodicalIF":7.7000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/9832761/09832772.pdf","citationCount":"3","resultStr":"{\"title\":\"Effect of Feature Selection on the Prediction of Direct Normal Irradiance\",\"authors\":\"Mohamed Khalifa Boutahir;Yousef Farhaoui;Mourade Azrour;Imad Zeroual;Ahmad El Allaoui\",\"doi\":\"10.26599/BDMA.2022.9020003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar radiation is capable of producing heat, causing chemical reactions, or generating electricity. Thus, the amount of solar radiation at different times of the day must be determined to design and equip all solar systems. Moreover, it is necessary to have a thorough understanding of different solar radiation components, such as Direct Normal Irradiance (DNI), Diffuse Horizontal Irradiance (DHI), and Global Horizontal Irradiance (GHI). Unfortunately, measurements of solar radiation are not easily accessible for the majority of regions on the globe. This paper aims to develop a set of deep learning models through feature importance algorithms to predict the DNI data. The proposed models are based on historical data of meteorological parameters and solar radiation properties in a specific location of the region of Errachidia, Morocco, from January 1, 2017, to December 31, 2019, with an interval of 60 minutes. The findings demonstrated that feature selection approaches play a crucial role in forecasting of solar radiation accurately when compared with the available data.\",\"PeriodicalId\":52355,\"journal\":{\"name\":\"Big Data Mining and Analytics\",\"volume\":\"5 4\",\"pages\":\"309-317\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8254253/9832761/09832772.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data Mining and Analytics\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9832772/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/9832772/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Effect of Feature Selection on the Prediction of Direct Normal Irradiance
Solar radiation is capable of producing heat, causing chemical reactions, or generating electricity. Thus, the amount of solar radiation at different times of the day must be determined to design and equip all solar systems. Moreover, it is necessary to have a thorough understanding of different solar radiation components, such as Direct Normal Irradiance (DNI), Diffuse Horizontal Irradiance (DHI), and Global Horizontal Irradiance (GHI). Unfortunately, measurements of solar radiation are not easily accessible for the majority of regions on the globe. This paper aims to develop a set of deep learning models through feature importance algorithms to predict the DNI data. The proposed models are based on historical data of meteorological parameters and solar radiation properties in a specific location of the region of Errachidia, Morocco, from January 1, 2017, to December 31, 2019, with an interval of 60 minutes. The findings demonstrated that feature selection approaches play a crucial role in forecasting of solar radiation accurately when compared with the available data.
期刊介绍:
Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge.
Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications.
Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more.
With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.