Jiantao Zheng;Cuixiang Lin;Zhenpeng Wu;Hong-Dong Li
{"title":"内含子保留检测的计算方法比较","authors":"Jiantao Zheng;Cuixiang Lin;Zhenpeng Wu;Hong-Dong Li","doi":"10.26599/BDMA.2021.9020014","DOIUrl":null,"url":null,"abstract":"Intron Retention (IR) is an alternative splicing mode through which introns are retained in mature RNAs rather than being spliced in most cases. IR has been gaining increasing attention in recent years because of its recognized association with gene expression regulation and complex diseases. Continuous efforts have been dedicated to the development of IR detection methods. These methods differ in their metrics to quantify retention propensity, performance to detect IR events, functional enrichment of detected IRs, and computational speed. A systematic experimental comparison would be valuable to the selection and use of existing methods. In this work, we conduct an experimental comparison of existing IR detection methods. Considering the unavailability of a gold standard dataset of intron retention, we compare the IR detection performance on simulation datasets. Then, we compare the IR detection results with real RNA-Seq data. We also describe the use of differential analysis methods to identify disease-associated IRs and compare differential IRs along with their Gene Ontology enrichment, which is illustrated on an Alzheimer's disease RNA-Seq dataset. We discuss key principles and features of existing approaches and outline their differences. This systematic analysis provides helpful guidance for interrogating transcriptomic data from the point of view of IR.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"5 1","pages":"15-31"},"PeriodicalIF":7.7000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/9663253/09663257.pdf","citationCount":"2","resultStr":"{\"title\":\"A comparison of computational approaches for intron retention detection\",\"authors\":\"Jiantao Zheng;Cuixiang Lin;Zhenpeng Wu;Hong-Dong Li\",\"doi\":\"10.26599/BDMA.2021.9020014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intron Retention (IR) is an alternative splicing mode through which introns are retained in mature RNAs rather than being spliced in most cases. IR has been gaining increasing attention in recent years because of its recognized association with gene expression regulation and complex diseases. Continuous efforts have been dedicated to the development of IR detection methods. These methods differ in their metrics to quantify retention propensity, performance to detect IR events, functional enrichment of detected IRs, and computational speed. A systematic experimental comparison would be valuable to the selection and use of existing methods. In this work, we conduct an experimental comparison of existing IR detection methods. Considering the unavailability of a gold standard dataset of intron retention, we compare the IR detection performance on simulation datasets. Then, we compare the IR detection results with real RNA-Seq data. We also describe the use of differential analysis methods to identify disease-associated IRs and compare differential IRs along with their Gene Ontology enrichment, which is illustrated on an Alzheimer's disease RNA-Seq dataset. We discuss key principles and features of existing approaches and outline their differences. This systematic analysis provides helpful guidance for interrogating transcriptomic data from the point of view of IR.\",\"PeriodicalId\":52355,\"journal\":{\"name\":\"Big Data Mining and Analytics\",\"volume\":\"5 1\",\"pages\":\"15-31\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2021-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8254253/9663253/09663257.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data Mining and Analytics\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9663257/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/9663257/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A comparison of computational approaches for intron retention detection
Intron Retention (IR) is an alternative splicing mode through which introns are retained in mature RNAs rather than being spliced in most cases. IR has been gaining increasing attention in recent years because of its recognized association with gene expression regulation and complex diseases. Continuous efforts have been dedicated to the development of IR detection methods. These methods differ in their metrics to quantify retention propensity, performance to detect IR events, functional enrichment of detected IRs, and computational speed. A systematic experimental comparison would be valuable to the selection and use of existing methods. In this work, we conduct an experimental comparison of existing IR detection methods. Considering the unavailability of a gold standard dataset of intron retention, we compare the IR detection performance on simulation datasets. Then, we compare the IR detection results with real RNA-Seq data. We also describe the use of differential analysis methods to identify disease-associated IRs and compare differential IRs along with their Gene Ontology enrichment, which is illustrated on an Alzheimer's disease RNA-Seq dataset. We discuss key principles and features of existing approaches and outline their differences. This systematic analysis provides helpful guidance for interrogating transcriptomic data from the point of view of IR.
期刊介绍:
Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge.
Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications.
Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more.
With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.