{"title":"自然孵化的鹪鹩卵表面微生物多样性的评价","authors":"Beth A. Potter, B. Carlson, A. E. Adams, M. Voss","doi":"10.2174/1874453220130815001","DOIUrl":null,"url":null,"abstract":"During ovipositioning, avian eggshells become susceptible to bacterial and fungal growth and studies have shown that a community of these microorganisms, or microflora, is maintained on eggshells throughout the incubation process. To determine the possible role of these microorganisms on embryonic development, it is first important to under- stand the composition of the microbial community present on the surface of the egg. A limited amount of studies have been published in this area; thus, the objective of this study was to broaden this area of study and determine what bacterial communities are found on the surface of naturally-incubated House Wren eggs across three stages of incubation (pre, early, and late) as defined by egg temperature. Our data uniquely suggest that the eggshell microflora is dynamic and that this may be regulated by temperature fluctuations due to intermittent incubation behavior. Using culture-based techniques, 46 different bacterial species were identified belonging to 13 bacterial families and 20 genera. The majority of bacteria be- longed to the Pseudomonas, Staphylococcus, Stenotrophomonas, or Burkholderia genera and have been previously asso- ciated with avian eggs and nests. Bacteria within the Pseudomonas genus were the most predominant and we hypothesize that their maintenance may be linked to their ability to produce antibiotic substances called bacteriocins. The bacterial composition of the microflora isolated in this study also suggests that avian egg microfloras are derived from environ- mental origins.","PeriodicalId":39058,"journal":{"name":"Open Ornithology Journal","volume":"6 1","pages":"32-39"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"An Assessment of the Microbial Diversity Present on the Surface of Naturally Incubated House Wren Eggs\",\"authors\":\"Beth A. Potter, B. Carlson, A. E. Adams, M. Voss\",\"doi\":\"10.2174/1874453220130815001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During ovipositioning, avian eggshells become susceptible to bacterial and fungal growth and studies have shown that a community of these microorganisms, or microflora, is maintained on eggshells throughout the incubation process. To determine the possible role of these microorganisms on embryonic development, it is first important to under- stand the composition of the microbial community present on the surface of the egg. A limited amount of studies have been published in this area; thus, the objective of this study was to broaden this area of study and determine what bacterial communities are found on the surface of naturally-incubated House Wren eggs across three stages of incubation (pre, early, and late) as defined by egg temperature. Our data uniquely suggest that the eggshell microflora is dynamic and that this may be regulated by temperature fluctuations due to intermittent incubation behavior. Using culture-based techniques, 46 different bacterial species were identified belonging to 13 bacterial families and 20 genera. The majority of bacteria be- longed to the Pseudomonas, Staphylococcus, Stenotrophomonas, or Burkholderia genera and have been previously asso- ciated with avian eggs and nests. Bacteria within the Pseudomonas genus were the most predominant and we hypothesize that their maintenance may be linked to their ability to produce antibiotic substances called bacteriocins. The bacterial composition of the microflora isolated in this study also suggests that avian egg microfloras are derived from environ- mental origins.\",\"PeriodicalId\":39058,\"journal\":{\"name\":\"Open Ornithology Journal\",\"volume\":\"6 1\",\"pages\":\"32-39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Ornithology Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874453220130815001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ornithology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874453220130815001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
An Assessment of the Microbial Diversity Present on the Surface of Naturally Incubated House Wren Eggs
During ovipositioning, avian eggshells become susceptible to bacterial and fungal growth and studies have shown that a community of these microorganisms, or microflora, is maintained on eggshells throughout the incubation process. To determine the possible role of these microorganisms on embryonic development, it is first important to under- stand the composition of the microbial community present on the surface of the egg. A limited amount of studies have been published in this area; thus, the objective of this study was to broaden this area of study and determine what bacterial communities are found on the surface of naturally-incubated House Wren eggs across three stages of incubation (pre, early, and late) as defined by egg temperature. Our data uniquely suggest that the eggshell microflora is dynamic and that this may be regulated by temperature fluctuations due to intermittent incubation behavior. Using culture-based techniques, 46 different bacterial species were identified belonging to 13 bacterial families and 20 genera. The majority of bacteria be- longed to the Pseudomonas, Staphylococcus, Stenotrophomonas, or Burkholderia genera and have been previously asso- ciated with avian eggs and nests. Bacteria within the Pseudomonas genus were the most predominant and we hypothesize that their maintenance may be linked to their ability to produce antibiotic substances called bacteriocins. The bacterial composition of the microflora isolated in this study also suggests that avian egg microfloras are derived from environ- mental origins.
期刊介绍:
The Open Ornithology Journal is an Open Access online journal, which publishes research articles, reviews/mini-reviews, letters and guest edited single topic issues in all important areas of ornithology including avian behaviour,genetics, phylogeography , conservation, demography, ecology, evolution, and morphology. The Open Ornithology Journal, a peer-reviewed journal, is an important and reliable source of current information on developments in the field. The emphasis will be on publishing quality papers rapidly and making them freely available to researchers worldwide.