{"title":"人类肠道元基因组的自组织方法","authors":"Jianfeng Zhu, Songgang Li, Wei-Mou Zheng","doi":"10.2174/1875036201206010028","DOIUrl":null,"url":null,"abstract":"We extend the self-organizing approach for annotation of a bacterial genome to analyzing the raw sequencing data of the human gut metagenome without sequence assembling. The original approach divides the genomic sequence of a bacterium into non-overlapping segments of equal length and assigns to each segment one of seven 'phases', among which one is for the noncoding regions, three for the direct coding regions to indicate the three possible codon positions of the segment starting site, and three for the reverse coding regions. The noncoding phase and the six coding phases are described by two frequency tables of the 64 triplet types or 'codon usages'. A set of codon usages can be used to update the phase assignment and vice versa. After an initialization of phase assignment or codon usage tables, an iteration leads to a convergent phase assignment to give an annotation of the genome. In the extension of the approach to a metagenome, we consider a mixture model of a number of categories of genomes. The Illumina Genome Analyzer sequencing data of the total DNA from faecal samples are then examined to understand the diversity of the human gut microbiome.","PeriodicalId":38956,"journal":{"name":"Open Bioinformatics Journal","volume":"6 1","pages":"28-36"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-organizing Approach for the Human Gut Meta-genome\",\"authors\":\"Jianfeng Zhu, Songgang Li, Wei-Mou Zheng\",\"doi\":\"10.2174/1875036201206010028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the self-organizing approach for annotation of a bacterial genome to analyzing the raw sequencing data of the human gut metagenome without sequence assembling. The original approach divides the genomic sequence of a bacterium into non-overlapping segments of equal length and assigns to each segment one of seven 'phases', among which one is for the noncoding regions, three for the direct coding regions to indicate the three possible codon positions of the segment starting site, and three for the reverse coding regions. The noncoding phase and the six coding phases are described by two frequency tables of the 64 triplet types or 'codon usages'. A set of codon usages can be used to update the phase assignment and vice versa. After an initialization of phase assignment or codon usage tables, an iteration leads to a convergent phase assignment to give an annotation of the genome. In the extension of the approach to a metagenome, we consider a mixture model of a number of categories of genomes. The Illumina Genome Analyzer sequencing data of the total DNA from faecal samples are then examined to understand the diversity of the human gut microbiome.\",\"PeriodicalId\":38956,\"journal\":{\"name\":\"Open Bioinformatics Journal\",\"volume\":\"6 1\",\"pages\":\"28-36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Bioinformatics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1875036201206010028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Bioinformatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1875036201206010028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Self-organizing Approach for the Human Gut Meta-genome
We extend the self-organizing approach for annotation of a bacterial genome to analyzing the raw sequencing data of the human gut metagenome without sequence assembling. The original approach divides the genomic sequence of a bacterium into non-overlapping segments of equal length and assigns to each segment one of seven 'phases', among which one is for the noncoding regions, three for the direct coding regions to indicate the three possible codon positions of the segment starting site, and three for the reverse coding regions. The noncoding phase and the six coding phases are described by two frequency tables of the 64 triplet types or 'codon usages'. A set of codon usages can be used to update the phase assignment and vice versa. After an initialization of phase assignment or codon usage tables, an iteration leads to a convergent phase assignment to give an annotation of the genome. In the extension of the approach to a metagenome, we consider a mixture model of a number of categories of genomes. The Illumina Genome Analyzer sequencing data of the total DNA from faecal samples are then examined to understand the diversity of the human gut microbiome.
期刊介绍:
The Open Bioinformatics Journal is an Open Access online journal, which publishes research articles, reviews/mini-reviews, letters, clinical trial studies and guest edited single topic issues in all areas of bioinformatics and computational biology. The coverage includes biomedicine, focusing on large data acquisition, analysis and curation, computational and statistical methods for the modeling and analysis of biological data, and descriptions of new algorithms and databases. The Open Bioinformatics Journal, a peer reviewed journal, is an important and reliable source of current information on the developments in the field. The emphasis will be on publishing quality articles rapidly and freely available worldwide.