{"title":"遗传研究:全基因组关联研究中的线性混合模型","authors":"Gengxin Li, Hongjiang Zhu","doi":"10.2174/1875036201307010027","DOIUrl":null,"url":null,"abstract":"With the availability of high-density genomic data containing millions of single nucleotide polymorphisms and tens or hundreds of thousands of individuals, genetic association study is likely to identify the variants contributing to complex traits in a genome-wide scale. However, genome-wide association studies are confounded by some spurious associations due to not properly interpreting sample structure (containing population structure, family structure and cryptic relatedness). The absence of complete genealogy of population in the genome-wide association studies model greatly motivates the development of new methods to correct the inflation of false positive. In this process, linear mixed model based approaches with the advantage of capturing multilevel relatedness have gained large ground. We summarize current literatures dealing with sample structure, and our review focuses on the following four areas: (i) The approaches handling population structure in genome-wide association studies; (ii) The linear mixed model based approaches in genome-wide association studies; (iii) The performance of linear mixed model based approaches in genome-wide association studies and (iv) The unsolved issues and future work of linear mixed model based approaches.","PeriodicalId":38956,"journal":{"name":"Open Bioinformatics Journal","volume":"7 1","pages":"27-33"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Genetic Studies: The Linear Mixed Models in Genome-wide Association Studies\",\"authors\":\"Gengxin Li, Hongjiang Zhu\",\"doi\":\"10.2174/1875036201307010027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the availability of high-density genomic data containing millions of single nucleotide polymorphisms and tens or hundreds of thousands of individuals, genetic association study is likely to identify the variants contributing to complex traits in a genome-wide scale. However, genome-wide association studies are confounded by some spurious associations due to not properly interpreting sample structure (containing population structure, family structure and cryptic relatedness). The absence of complete genealogy of population in the genome-wide association studies model greatly motivates the development of new methods to correct the inflation of false positive. In this process, linear mixed model based approaches with the advantage of capturing multilevel relatedness have gained large ground. We summarize current literatures dealing with sample structure, and our review focuses on the following four areas: (i) The approaches handling population structure in genome-wide association studies; (ii) The linear mixed model based approaches in genome-wide association studies; (iii) The performance of linear mixed model based approaches in genome-wide association studies and (iv) The unsolved issues and future work of linear mixed model based approaches.\",\"PeriodicalId\":38956,\"journal\":{\"name\":\"Open Bioinformatics Journal\",\"volume\":\"7 1\",\"pages\":\"27-33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Bioinformatics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1875036201307010027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Bioinformatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1875036201307010027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Genetic Studies: The Linear Mixed Models in Genome-wide Association Studies
With the availability of high-density genomic data containing millions of single nucleotide polymorphisms and tens or hundreds of thousands of individuals, genetic association study is likely to identify the variants contributing to complex traits in a genome-wide scale. However, genome-wide association studies are confounded by some spurious associations due to not properly interpreting sample structure (containing population structure, family structure and cryptic relatedness). The absence of complete genealogy of population in the genome-wide association studies model greatly motivates the development of new methods to correct the inflation of false positive. In this process, linear mixed model based approaches with the advantage of capturing multilevel relatedness have gained large ground. We summarize current literatures dealing with sample structure, and our review focuses on the following four areas: (i) The approaches handling population structure in genome-wide association studies; (ii) The linear mixed model based approaches in genome-wide association studies; (iii) The performance of linear mixed model based approaches in genome-wide association studies and (iv) The unsolved issues and future work of linear mixed model based approaches.
期刊介绍:
The Open Bioinformatics Journal is an Open Access online journal, which publishes research articles, reviews/mini-reviews, letters, clinical trial studies and guest edited single topic issues in all areas of bioinformatics and computational biology. The coverage includes biomedicine, focusing on large data acquisition, analysis and curation, computational and statistical methods for the modeling and analysis of biological data, and descriptions of new algorithms and databases. The Open Bioinformatics Journal, a peer reviewed journal, is an important and reliable source of current information on the developments in the field. The emphasis will be on publishing quality articles rapidly and freely available worldwide.