基于言语的帕金森早期诊断研究中的遗传算法和主成分分析

Harisudha Kuresan, Dhanalakshmi Samiappan
{"title":"基于言语的帕金森早期诊断研究中的遗传算法和主成分分析","authors":"Harisudha Kuresan, Dhanalakshmi Samiappan","doi":"10.22075/IJNAA.2022.5541","DOIUrl":null,"url":null,"abstract":"Parkinson's Disease (PD) is a neurodegenerative disorder that affects predominantly neurons in the brain. The main purpose of this paper is to define a way in detecting the PD in its early stages. This has been achieved through the use of recorded speech, a biomarker in the natural environment in its original state.  In this paper, the Mel-Frequency Cepstral Coefficients (MFCC)  method is utilized to extract features from the recorded speech. The principal component analysis (PCA) and Genetic algorithm (GA) are then applied for feature extraction/selection. Once the features are selected, multiple classifiers are then applied for classification. Performance metrics such as accuracy, specificity, and sensitivity are measured. The result shows that Support Vector Machine (SVM) along with the GA has shown optimal performance.","PeriodicalId":14240,"journal":{"name":"International Journal of Nonlinear Analysis and Applications","volume":"13 1","pages":"591-602"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic algorithm and principal components analysis in speech-based parkinson's early diagnosis studies\",\"authors\":\"Harisudha Kuresan, Dhanalakshmi Samiappan\",\"doi\":\"10.22075/IJNAA.2022.5541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parkinson's Disease (PD) is a neurodegenerative disorder that affects predominantly neurons in the brain. The main purpose of this paper is to define a way in detecting the PD in its early stages. This has been achieved through the use of recorded speech, a biomarker in the natural environment in its original state.  In this paper, the Mel-Frequency Cepstral Coefficients (MFCC)  method is utilized to extract features from the recorded speech. The principal component analysis (PCA) and Genetic algorithm (GA) are then applied for feature extraction/selection. Once the features are selected, multiple classifiers are then applied for classification. Performance metrics such as accuracy, specificity, and sensitivity are measured. The result shows that Support Vector Machine (SVM) along with the GA has shown optimal performance.\",\"PeriodicalId\":14240,\"journal\":{\"name\":\"International Journal of Nonlinear Analysis and Applications\",\"volume\":\"13 1\",\"pages\":\"591-602\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22075/IJNAA.2022.5541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/IJNAA.2022.5541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

帕金森病(PD)是一种主要影响大脑神经元的神经退行性疾病。本文的主要目的是确定一种检测PD早期阶段的方法。这是通过使用语音记录来实现的,语音记录是自然环境中原始状态的生物标志物。本文利用Mel-Frequency倒谱系数(MFCC)方法从录音语音中提取特征。然后应用主成分分析(PCA)和遗传算法(GA)进行特征提取/选择。一旦特征被选择,然后应用多个分类器进行分类。性能指标,如准确性,特异性和敏感性进行测量。结果表明,支持向量机(SVM)与遗传算法相结合具有最优的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genetic algorithm and principal components analysis in speech-based parkinson's early diagnosis studies
Parkinson's Disease (PD) is a neurodegenerative disorder that affects predominantly neurons in the brain. The main purpose of this paper is to define a way in detecting the PD in its early stages. This has been achieved through the use of recorded speech, a biomarker in the natural environment in its original state.  In this paper, the Mel-Frequency Cepstral Coefficients (MFCC)  method is utilized to extract features from the recorded speech. The principal component analysis (PCA) and Genetic algorithm (GA) are then applied for feature extraction/selection. Once the features are selected, multiple classifiers are then applied for classification. Performance metrics such as accuracy, specificity, and sensitivity are measured. The result shows that Support Vector Machine (SVM) along with the GA has shown optimal performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
160
期刊最新文献
Classes of certain analytic functions defining by subordinations Some common fixed point theorems for strict contractions Some common fixed point results of multivalued mappings on fuzzy metric space Some coupled coincidence and coupled common fixed point result in dislocated quasi b-metric spaces for rational type contraction mappings Fixed Point Results in Complex Valued Metric Spaces and an Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1