{"title":"稀疏最小平均方差估计通过信号提取方法进行多元回归","authors":"Saja Mohammad, Z. Alabacy","doi":"10.22075/IJNAA.2022.5660","DOIUrl":null,"url":null,"abstract":"In this paper, a new sparse method called (MAVE-SiER) is proposed, to introduce MAVE-SiER, we combined the effective sufficient dimension reduction method MAVE with the sparse method Signal extraction approach to multivariate regression (SiER). MAVE-SiER has the benefit of expanding the Signal extraction method to multivariate regression (SiER) to nonlinear and multi-dimensional regression. MAVE-SiER also allows MAVE to deal with problems which the predictors are highly correlated. MAVE-SiER may estimate dimensions exhaustively while concurrently choosing useful variables. Simulation studies confirmed MAVE-SiER performance.","PeriodicalId":14240,"journal":{"name":"International Journal of Nonlinear Analysis and Applications","volume":"13 1","pages":"1167-1173"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse minimum average variance estimation through signal extraction approach to multivariate regression\",\"authors\":\"Saja Mohammad, Z. Alabacy\",\"doi\":\"10.22075/IJNAA.2022.5660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new sparse method called (MAVE-SiER) is proposed, to introduce MAVE-SiER, we combined the effective sufficient dimension reduction method MAVE with the sparse method Signal extraction approach to multivariate regression (SiER). MAVE-SiER has the benefit of expanding the Signal extraction method to multivariate regression (SiER) to nonlinear and multi-dimensional regression. MAVE-SiER also allows MAVE to deal with problems which the predictors are highly correlated. MAVE-SiER may estimate dimensions exhaustively while concurrently choosing useful variables. Simulation studies confirmed MAVE-SiER performance.\",\"PeriodicalId\":14240,\"journal\":{\"name\":\"International Journal of Nonlinear Analysis and Applications\",\"volume\":\"13 1\",\"pages\":\"1167-1173\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22075/IJNAA.2022.5660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/IJNAA.2022.5660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Sparse minimum average variance estimation through signal extraction approach to multivariate regression
In this paper, a new sparse method called (MAVE-SiER) is proposed, to introduce MAVE-SiER, we combined the effective sufficient dimension reduction method MAVE with the sparse method Signal extraction approach to multivariate regression (SiER). MAVE-SiER has the benefit of expanding the Signal extraction method to multivariate regression (SiER) to nonlinear and multi-dimensional regression. MAVE-SiER also allows MAVE to deal with problems which the predictors are highly correlated. MAVE-SiER may estimate dimensions exhaustively while concurrently choosing useful variables. Simulation studies confirmed MAVE-SiER performance.