P. Sheikhzadeh, H. Ghadiri, P. Geramifar, P. Ghafarian, M. Ay
{"title":"基于蒙特卡罗建模的脑PET扫描仪球体几何结构设计与性能评价","authors":"P. Sheikhzadeh, H. Ghadiri, P. Geramifar, P. Ghafarian, M. Ay","doi":"10.18502/IRJNM.V27I1.972","DOIUrl":null,"url":null,"abstract":"Introduction: There has been a curiosity about the spheroid geometry for PET scanners developments since several years ago, therefore in this study, we are aiming to evaluate the performance of this geometry and compare its performance with cylindrical geometry using Monte Carlo simulation. Methods: We simulated a spheroid geometry with a radius of 199 mm, patient bore with of radius of 175 mm, which is compatible with brain size. In second design, cylindrical geometry was simulated with transaxial FOV and ring radius of 175 mm as well. Photon detection efficiency (PDE), NEMA line source sensitivity, spatial resolution and Derenzo phantom image quality were analyzed. Results: We obtained PDE about 21.7% versus 23.8% in 250-750 keV and 19.5% versus 21.3% in 410-613 keV for point source in center of FOV for spheroid and cylindrical PET respectively. The results of NEMA sensitivity measurements indicate 3.29 kcps/MBq versus 3.64 kcps/MBq for spheroid and cylindrical designs. The spatial resolution (FWHM) calculations using MLEM reconstruction algorithm show around 1.6 mm for transvers and axial resolution for point source placed in center of FOV for both scanners. Also we found for spheroid and cylindrical designs 4.8 and 2.7 mm versus 4 and 3.6 mm as transvers and axial mean resolution for off-center point sources. Conclusion: Performance evaluation study indicates that the spheroid geometry delivers better axial resolution whereas cylindrical design can still provide higher sensitivity and transvers spatial resolution than the spheroid geometry PET with same scanner bore size.","PeriodicalId":42503,"journal":{"name":"Iranian Journal of Nuclear Medicine","volume":"1 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design and performance evaluation of spheroid geometry for brain PET scanner using Monte Carlo modeling\",\"authors\":\"P. Sheikhzadeh, H. Ghadiri, P. Geramifar, P. Ghafarian, M. Ay\",\"doi\":\"10.18502/IRJNM.V27I1.972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: There has been a curiosity about the spheroid geometry for PET scanners developments since several years ago, therefore in this study, we are aiming to evaluate the performance of this geometry and compare its performance with cylindrical geometry using Monte Carlo simulation. Methods: We simulated a spheroid geometry with a radius of 199 mm, patient bore with of radius of 175 mm, which is compatible with brain size. In second design, cylindrical geometry was simulated with transaxial FOV and ring radius of 175 mm as well. Photon detection efficiency (PDE), NEMA line source sensitivity, spatial resolution and Derenzo phantom image quality were analyzed. Results: We obtained PDE about 21.7% versus 23.8% in 250-750 keV and 19.5% versus 21.3% in 410-613 keV for point source in center of FOV for spheroid and cylindrical PET respectively. The results of NEMA sensitivity measurements indicate 3.29 kcps/MBq versus 3.64 kcps/MBq for spheroid and cylindrical designs. The spatial resolution (FWHM) calculations using MLEM reconstruction algorithm show around 1.6 mm for transvers and axial resolution for point source placed in center of FOV for both scanners. Also we found for spheroid and cylindrical designs 4.8 and 2.7 mm versus 4 and 3.6 mm as transvers and axial mean resolution for off-center point sources. Conclusion: Performance evaluation study indicates that the spheroid geometry delivers better axial resolution whereas cylindrical design can still provide higher sensitivity and transvers spatial resolution than the spheroid geometry PET with same scanner bore size.\",\"PeriodicalId\":42503,\"journal\":{\"name\":\"Iranian Journal of Nuclear Medicine\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Nuclear Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18502/IRJNM.V27I1.972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Nuclear Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/IRJNM.V27I1.972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Design and performance evaluation of spheroid geometry for brain PET scanner using Monte Carlo modeling
Introduction: There has been a curiosity about the spheroid geometry for PET scanners developments since several years ago, therefore in this study, we are aiming to evaluate the performance of this geometry and compare its performance with cylindrical geometry using Monte Carlo simulation. Methods: We simulated a spheroid geometry with a radius of 199 mm, patient bore with of radius of 175 mm, which is compatible with brain size. In second design, cylindrical geometry was simulated with transaxial FOV and ring radius of 175 mm as well. Photon detection efficiency (PDE), NEMA line source sensitivity, spatial resolution and Derenzo phantom image quality were analyzed. Results: We obtained PDE about 21.7% versus 23.8% in 250-750 keV and 19.5% versus 21.3% in 410-613 keV for point source in center of FOV for spheroid and cylindrical PET respectively. The results of NEMA sensitivity measurements indicate 3.29 kcps/MBq versus 3.64 kcps/MBq for spheroid and cylindrical designs. The spatial resolution (FWHM) calculations using MLEM reconstruction algorithm show around 1.6 mm for transvers and axial resolution for point source placed in center of FOV for both scanners. Also we found for spheroid and cylindrical designs 4.8 and 2.7 mm versus 4 and 3.6 mm as transvers and axial mean resolution for off-center point sources. Conclusion: Performance evaluation study indicates that the spheroid geometry delivers better axial resolution whereas cylindrical design can still provide higher sensitivity and transvers spatial resolution than the spheroid geometry PET with same scanner bore size.
期刊介绍:
Iranian Journal of Nuclear Medicine is a peer-reviewed biannually journal of the Research Institute for Nuclear Medicine, Tehran University of Medical Sciences, covering basic and clinical nuclear medicine sciences and relevant applications such as molecular imaging, functional and metabolic investigation of disease, radiobiology, dosimetry, radiopharmacy, radiochemistry, instrumentation and computer sciences, etc. The journal particularly welcomes original articles reflecting the local or worldwide growing materials as well as common critical problems and interests in the field of nuclear medicine. Also review articles, case reports and letters to the editor in this subject will be accepted.