Guomin Liu, Haoqing Chen, Yue Yin, Yongxu Chen, Yansong Liu
{"title":"基于蝴蝶翅膀的光热转换性能的仿生研究","authors":"Guomin Liu, Haoqing Chen, Yue Yin, Yongxu Chen, Yansong Liu","doi":"10.1111/1748-5967.12673","DOIUrl":null,"url":null,"abstract":"<p>As the demand for sustainable construction practices increases, innovative ideas are being explored for the construction of insulated wall panels in contemporary buildings. The butterfly is a remarkable organism that uses a thermostatic mechanism to regulate its body temperature. The microstructure on the surface of its wing scales is responsible for reflecting incident light multiple times, extending the optical path, and increasing the light absorption, thus ensuring that its body temperature remains stable. This microstructure, also known as the light capture structure, has been simulated and analyzed using ANSYS software. The results indicate that this structure can improve the light-thermal conversion efficiency in the illuminated region, thus increasing the local heat using light radiation. Additionally, due to the unique arrangement of units in the light capture structure, the heat exchange rate with air is significantly reduced, resulting in a low heat flux. Therefore, if this butterfly-like trapped light structure is applied to the insulated wall panels, the requirements of modern architectural concepts can be realized.</p>","PeriodicalId":11776,"journal":{"name":"Entomological Research","volume":"53 10","pages":"390-403"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bionic research of photothermal conversion performance based on butterfly wings\",\"authors\":\"Guomin Liu, Haoqing Chen, Yue Yin, Yongxu Chen, Yansong Liu\",\"doi\":\"10.1111/1748-5967.12673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As the demand for sustainable construction practices increases, innovative ideas are being explored for the construction of insulated wall panels in contemporary buildings. The butterfly is a remarkable organism that uses a thermostatic mechanism to regulate its body temperature. The microstructure on the surface of its wing scales is responsible for reflecting incident light multiple times, extending the optical path, and increasing the light absorption, thus ensuring that its body temperature remains stable. This microstructure, also known as the light capture structure, has been simulated and analyzed using ANSYS software. The results indicate that this structure can improve the light-thermal conversion efficiency in the illuminated region, thus increasing the local heat using light radiation. Additionally, due to the unique arrangement of units in the light capture structure, the heat exchange rate with air is significantly reduced, resulting in a low heat flux. Therefore, if this butterfly-like trapped light structure is applied to the insulated wall panels, the requirements of modern architectural concepts can be realized.</p>\",\"PeriodicalId\":11776,\"journal\":{\"name\":\"Entomological Research\",\"volume\":\"53 10\",\"pages\":\"390-403\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entomological Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1748-5967.12673\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entomological Research","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1748-5967.12673","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Bionic research of photothermal conversion performance based on butterfly wings
As the demand for sustainable construction practices increases, innovative ideas are being explored for the construction of insulated wall panels in contemporary buildings. The butterfly is a remarkable organism that uses a thermostatic mechanism to regulate its body temperature. The microstructure on the surface of its wing scales is responsible for reflecting incident light multiple times, extending the optical path, and increasing the light absorption, thus ensuring that its body temperature remains stable. This microstructure, also known as the light capture structure, has been simulated and analyzed using ANSYS software. The results indicate that this structure can improve the light-thermal conversion efficiency in the illuminated region, thus increasing the local heat using light radiation. Additionally, due to the unique arrangement of units in the light capture structure, the heat exchange rate with air is significantly reduced, resulting in a low heat flux. Therefore, if this butterfly-like trapped light structure is applied to the insulated wall panels, the requirements of modern architectural concepts can be realized.
期刊介绍:
Entomological Research is the successor of the Korean Journal of Entomology. Published by the Entomological Society of Korea (ESK) since 1970, it is the official English language journal of ESK, and publishes original research articles dealing with any aspect of entomology. Papers in any of the following fields will be considered:
-systematics-
ecology-
physiology-
biochemistry-
pest control-
embryology-
genetics-
cell and molecular biology-
medical entomology-
apiculture and sericulture.
The Journal publishes research papers and invited reviews.