阿曼北苏丹国Natih组上白垩统碳酸盐烃源岩沉积过程中底水氧合作用的沉积学证据

Geoarabia Pub Date : 2011-04-01 DOI:10.2113/geoarabia160247
S. A. Balushi, J. Macquaker
{"title":"阿曼北苏丹国Natih组上白垩统碳酸盐烃源岩沉积过程中底水氧合作用的沉积学证据","authors":"S. A. Balushi, J. Macquaker","doi":"10.2113/geoarabia160247","DOIUrl":null,"url":null,"abstract":"\n Geologists have commonly argued that the deposition of the excellent carbonate source rock (up to 13.7% total organic carbon) in the Upper Cretaceous Natih-B Member intrashelf basin (water depth circa 50 m) was mainly controlled by the presence of bottom-water “anoxia” in the basin centre. Some authors have even linked the formation of the Natih-B organic-carbon-rich sediments to the global development of “oceanic anoxia” that occurred a number of times during the Late Cretaceous. Recent research, however, suggests that the mechanisms that underpin organic-carbon enrichment in intrashelf-basinal settings are complicated and, instead, controlled by the complex interplay of variations in primary production of organic carbon, clastic dilution, bottom-water anoxia, early diagenesis and optimising rates of sediment accumulation, and are not necessarily related to global-forcing mechanisms. In this study, the requirement for persistent bottom-water anoxic conditions for the preservation of organic matter in this setting is assessed, evidence for oxic/dysoxic bottom-water conditions during deposition of the Natih-B organic-carbon-rich sediments is presented, and alternative models to explain organic-matter enrichment are considered.\n Natih-B sediments (collected both spatially and temporally from both core and exposures in North Oman) have been investigated using a combination of optical and electron-optical (backscattered electron imagery) techniques, which provide additional data to those gathered by traditional field and geochemical methods. Natih-B lithofacies alternate between two main types: organic-carbon-rich carbonate mudstones and calcite-cement-rich wackestones. The organic-rich mudstones are typically fine grained, dark grey, exhibit remnant parallel lamina, and are partially burrowed. These units commonly contain planktonic foraminifera, coccoliths and organic matter (average about 5.4%, up to 13.7% total organic carbon). In addition, in-place bivalves (including thick-shelled oysters and flattened pectens) are present. The calcite-cement-rich wackestones are lighter in colour and extensively bioturbated (in most cases < 1.5% total organic carbon). This lithofacies comprises a mix of reworked skeletal fragments (including bivalves, gastropods, echinoderms, brachiopods and corals), ostracods, calcispheres, and both benthic and planktonic foraminifera that are pervasively cemented by calcite.\n Given the above observations, bottom waters during deposition of the Natih-B intrashelf-basinal sediments must have contained at least some oxygen, and it is unlikely that they were persistently “anoxic”. Instead, it is likely that short-term enhanced organic productivity, rapid delivery of organic components to the sediment/water interface, optimal rates of sediment accumulation and episodic burial were the fundamental parameters that controlled organic-carbon production and preservation. Organic-matter enrichment was, therefore, not restricted to anoxic depositional environments, and exploration strategies within intrashelf-basinal settings need to be expanded beyond times when basinal anoxia is thought to have existed.","PeriodicalId":55118,"journal":{"name":"Geoarabia","volume":"101 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Sedimentological evidence for bottom-water oxygenation during deposition of the Natih-B Member intrashelf-basinal sediments: Upper Cretaceous carbonate source rock, Natih Formation, North Sultanate of Oman\",\"authors\":\"S. A. Balushi, J. Macquaker\",\"doi\":\"10.2113/geoarabia160247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Geologists have commonly argued that the deposition of the excellent carbonate source rock (up to 13.7% total organic carbon) in the Upper Cretaceous Natih-B Member intrashelf basin (water depth circa 50 m) was mainly controlled by the presence of bottom-water “anoxia” in the basin centre. Some authors have even linked the formation of the Natih-B organic-carbon-rich sediments to the global development of “oceanic anoxia” that occurred a number of times during the Late Cretaceous. Recent research, however, suggests that the mechanisms that underpin organic-carbon enrichment in intrashelf-basinal settings are complicated and, instead, controlled by the complex interplay of variations in primary production of organic carbon, clastic dilution, bottom-water anoxia, early diagenesis and optimising rates of sediment accumulation, and are not necessarily related to global-forcing mechanisms. In this study, the requirement for persistent bottom-water anoxic conditions for the preservation of organic matter in this setting is assessed, evidence for oxic/dysoxic bottom-water conditions during deposition of the Natih-B organic-carbon-rich sediments is presented, and alternative models to explain organic-matter enrichment are considered.\\n Natih-B sediments (collected both spatially and temporally from both core and exposures in North Oman) have been investigated using a combination of optical and electron-optical (backscattered electron imagery) techniques, which provide additional data to those gathered by traditional field and geochemical methods. Natih-B lithofacies alternate between two main types: organic-carbon-rich carbonate mudstones and calcite-cement-rich wackestones. The organic-rich mudstones are typically fine grained, dark grey, exhibit remnant parallel lamina, and are partially burrowed. These units commonly contain planktonic foraminifera, coccoliths and organic matter (average about 5.4%, up to 13.7% total organic carbon). In addition, in-place bivalves (including thick-shelled oysters and flattened pectens) are present. The calcite-cement-rich wackestones are lighter in colour and extensively bioturbated (in most cases < 1.5% total organic carbon). This lithofacies comprises a mix of reworked skeletal fragments (including bivalves, gastropods, echinoderms, brachiopods and corals), ostracods, calcispheres, and both benthic and planktonic foraminifera that are pervasively cemented by calcite.\\n Given the above observations, bottom waters during deposition of the Natih-B intrashelf-basinal sediments must have contained at least some oxygen, and it is unlikely that they were persistently “anoxic”. Instead, it is likely that short-term enhanced organic productivity, rapid delivery of organic components to the sediment/water interface, optimal rates of sediment accumulation and episodic burial were the fundamental parameters that controlled organic-carbon production and preservation. Organic-matter enrichment was, therefore, not restricted to anoxic depositional environments, and exploration strategies within intrashelf-basinal settings need to be expanded beyond times when basinal anoxia is thought to have existed.\",\"PeriodicalId\":55118,\"journal\":{\"name\":\"Geoarabia\",\"volume\":\"101 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoarabia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2113/geoarabia160247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoarabia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2113/geoarabia160247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

地质学家普遍认为,上白垩统Natih-B段陆架内盆地(水深约50 m)的优质碳酸盐烃源岩沉积(有机碳总量高达13.7%)主要受盆地中心底水“缺氧”的控制。一些作者甚至将Natih-B富有机碳沉积物的形成与全球“海洋缺氧”的发展联系起来,这种缺氧在晚白垩纪期间多次发生。然而,最近的研究表明,支撑陆架-盆地内有机碳富集的机制是复杂的,相反,它受到有机碳初级生产、碎屑稀释、底水缺氧、早期成岩作用和沉积物堆积优化率等变化的复杂相互作用的控制,而不一定与全球强迫机制有关。在这项研究中,评估了在这种环境下保存有机物的持续底水缺氧条件的要求,提出了在Natih-B富有机碳沉积物沉积过程中存在缺氧/缺氧底水条件的证据,并考虑了解释有机物富集的替代模型。Natih-B沉积物(从阿曼北部的岩心和暴露处收集的空间和时间)已经使用光学和电子光学(背散射电子成像)技术的组合进行了研究,该技术为传统的现场和地球化学方法收集的数据提供了额外的数据。Natih-B岩相主要有富有机碳碳酸盐泥岩和富方解石胶结泥岩两种类型。富有机质泥岩颗粒细,深灰色,呈残余平行层状,部分呈洞状。这些单元通常含有浮游有孔虫、球粒岩和有机质(平均约5.4%,最高可达总有机碳的13.7%)。此外,还存在就地双壳类(包括厚壳牡蛎和扁平的牡蛎)。富含方解石-水泥的灰岩颜色较浅,生物扰动较大(大多数情况下有机碳总量< 1.5%)。这一岩相包括被改造过的骨骼碎片(包括双壳类、腹足类、棘皮类、腕足类和珊瑚)、介形虫、石壳类和底栖和浮游有孔虫,它们普遍被方解石胶结。鉴于上述观察结果,在Natih-B大陆架-盆地沉积物沉积期间,底部水必须至少含有一些氧气,并且它们不太可能持续“缺氧”。相反,有机生产力的短期提高、有机成分向沉积物/水界面的快速输送、沉积物的最佳积累速率和阶段性掩埋可能是控制有机碳生产和保存的基本参数。因此,有机质富集并不局限于缺氧沉积环境,在陆架-盆地背景下的勘探策略需要扩展到被认为存在盆地缺氧的时期之后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sedimentological evidence for bottom-water oxygenation during deposition of the Natih-B Member intrashelf-basinal sediments: Upper Cretaceous carbonate source rock, Natih Formation, North Sultanate of Oman
Geologists have commonly argued that the deposition of the excellent carbonate source rock (up to 13.7% total organic carbon) in the Upper Cretaceous Natih-B Member intrashelf basin (water depth circa 50 m) was mainly controlled by the presence of bottom-water “anoxia” in the basin centre. Some authors have even linked the formation of the Natih-B organic-carbon-rich sediments to the global development of “oceanic anoxia” that occurred a number of times during the Late Cretaceous. Recent research, however, suggests that the mechanisms that underpin organic-carbon enrichment in intrashelf-basinal settings are complicated and, instead, controlled by the complex interplay of variations in primary production of organic carbon, clastic dilution, bottom-water anoxia, early diagenesis and optimising rates of sediment accumulation, and are not necessarily related to global-forcing mechanisms. In this study, the requirement for persistent bottom-water anoxic conditions for the preservation of organic matter in this setting is assessed, evidence for oxic/dysoxic bottom-water conditions during deposition of the Natih-B organic-carbon-rich sediments is presented, and alternative models to explain organic-matter enrichment are considered. Natih-B sediments (collected both spatially and temporally from both core and exposures in North Oman) have been investigated using a combination of optical and electron-optical (backscattered electron imagery) techniques, which provide additional data to those gathered by traditional field and geochemical methods. Natih-B lithofacies alternate between two main types: organic-carbon-rich carbonate mudstones and calcite-cement-rich wackestones. The organic-rich mudstones are typically fine grained, dark grey, exhibit remnant parallel lamina, and are partially burrowed. These units commonly contain planktonic foraminifera, coccoliths and organic matter (average about 5.4%, up to 13.7% total organic carbon). In addition, in-place bivalves (including thick-shelled oysters and flattened pectens) are present. The calcite-cement-rich wackestones are lighter in colour and extensively bioturbated (in most cases < 1.5% total organic carbon). This lithofacies comprises a mix of reworked skeletal fragments (including bivalves, gastropods, echinoderms, brachiopods and corals), ostracods, calcispheres, and both benthic and planktonic foraminifera that are pervasively cemented by calcite. Given the above observations, bottom waters during deposition of the Natih-B intrashelf-basinal sediments must have contained at least some oxygen, and it is unlikely that they were persistently “anoxic”. Instead, it is likely that short-term enhanced organic productivity, rapid delivery of organic components to the sediment/water interface, optimal rates of sediment accumulation and episodic burial were the fundamental parameters that controlled organic-carbon production and preservation. Organic-matter enrichment was, therefore, not restricted to anoxic depositional environments, and exploration strategies within intrashelf-basinal settings need to be expanded beyond times when basinal anoxia is thought to have existed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geoarabia
Geoarabia 地学-地球科学综合
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation. Published from 1996 to 2015, GeoArabia, The Journal of the Middle Eastern Geosciences was a quarterly journal covering the petroleum geosciences in the Middle East. The journal covers subjects such as: - sedimentology - tectonics - geophysics - petroleum reservoir characterization
期刊最新文献
Repairing the Aged Parkinsonian Striatum: Lessons from the Lab and Clinic. Facies analysis and sequence stratigraphy of the uppermost Jurassic– Lower Cretaceous Sulaiy Formation in outcrops of central Saudi Arabia Multi-level stratigraphic heterogeneities in a Triassic shoal grainstone, Oman Mountains, Sultanate of Oman: Layer-cake or shingles? Diagenesis of a light, tight-oil chert reservoir at the Ediacaran/Cambrian boundary, Sultanate of Oman History of hydrocarbon exploration in the Kurdistan Region of Iraq
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1