鱼类高效微波干燥系统的研制

Q3 Multidisciplinary Walailak Journal of Science and Technology Pub Date : 2011-11-16 DOI:10.2004/WJST.V3I2.140
Yuttapong Pianroj, Pansak Kerdthongmee, M. Nisoa, Priwan Kerdthongmee, Jirapong Galakarn
{"title":"鱼类高效微波干燥系统的研制","authors":"Yuttapong Pianroj, Pansak Kerdthongmee, M. Nisoa, Priwan Kerdthongmee, Jirapong Galakarn","doi":"10.2004/WJST.V3I2.140","DOIUrl":null,"url":null,"abstract":"Dried fish is an important product of Nakhon Si Thammarat province, located in southern Thailand. Fish are conventionally dried using heat from the sun or heat from burning wood as energy sources. These drying methods have problems such as low efficiency and environmental problems. Exploiting the strong electric dipole of the water molecules in the fish, which allows the fish to absorb microwave energy effectively, we have developed a novel microwave heating system for the efficient drying of fish. The system utilizes a high-voltage power supply so that the magnetron can generate a microwave field continuously, and its output power can be adjusted from 0 - 200 W making it very different to commercial microwave oven. The waveguide is designed for effective transmission of microwave fields into the multi-mode heating cavity. The experimental results reveal that heat produced by the microwave system causes evaporation of moisture from the fish making it possible to produce high quality dried fish. The drying process also shows a dependence of fish surface temperature and moisture content on the radiation time and microwave power.","PeriodicalId":38275,"journal":{"name":"Walailak Journal of Science and Technology","volume":"3 1","pages":"237-250"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Development of a Microwave System for Highly-Efficient Drying of Fish\",\"authors\":\"Yuttapong Pianroj, Pansak Kerdthongmee, M. Nisoa, Priwan Kerdthongmee, Jirapong Galakarn\",\"doi\":\"10.2004/WJST.V3I2.140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dried fish is an important product of Nakhon Si Thammarat province, located in southern Thailand. Fish are conventionally dried using heat from the sun or heat from burning wood as energy sources. These drying methods have problems such as low efficiency and environmental problems. Exploiting the strong electric dipole of the water molecules in the fish, which allows the fish to absorb microwave energy effectively, we have developed a novel microwave heating system for the efficient drying of fish. The system utilizes a high-voltage power supply so that the magnetron can generate a microwave field continuously, and its output power can be adjusted from 0 - 200 W making it very different to commercial microwave oven. The waveguide is designed for effective transmission of microwave fields into the multi-mode heating cavity. The experimental results reveal that heat produced by the microwave system causes evaporation of moisture from the fish making it possible to produce high quality dried fish. The drying process also shows a dependence of fish surface temperature and moisture content on the radiation time and microwave power.\",\"PeriodicalId\":38275,\"journal\":{\"name\":\"Walailak Journal of Science and Technology\",\"volume\":\"3 1\",\"pages\":\"237-250\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Walailak Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2004/WJST.V3I2.140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Walailak Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2004/WJST.V3I2.140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 8

摘要

干鱼是泰国南部那空西塔玛拉府的重要产品。传统上,鱼是用太阳的热量或燃烧木头的热量作为能源来干燥的。这些干燥方法存在效率低、环境问题等问题。利用鱼体内水分子的强电偶极子,使鱼能有效地吸收微波能量,我们开发了一种新型的微波加热系统,用于鱼的高效干燥。该系统利用高压电源使磁控管连续产生微波场,输出功率可在0 ~ 200w范围内调节,与商用微波炉有很大不同。该波导的设计目的是为了有效地将微波场传输到多模加热腔中。实验结果表明,微波系统产生的热量使鱼中的水分蒸发,从而可以生产出高质量的干鱼。干燥过程中鱼的表面温度和水分含量也与辐照时间和微波功率有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a Microwave System for Highly-Efficient Drying of Fish
Dried fish is an important product of Nakhon Si Thammarat province, located in southern Thailand. Fish are conventionally dried using heat from the sun or heat from burning wood as energy sources. These drying methods have problems such as low efficiency and environmental problems. Exploiting the strong electric dipole of the water molecules in the fish, which allows the fish to absorb microwave energy effectively, we have developed a novel microwave heating system for the efficient drying of fish. The system utilizes a high-voltage power supply so that the magnetron can generate a microwave field continuously, and its output power can be adjusted from 0 - 200 W making it very different to commercial microwave oven. The waveguide is designed for effective transmission of microwave fields into the multi-mode heating cavity. The experimental results reveal that heat produced by the microwave system causes evaporation of moisture from the fish making it possible to produce high quality dried fish. The drying process also shows a dependence of fish surface temperature and moisture content on the radiation time and microwave power.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Walailak Journal of Science and Technology
Walailak Journal of Science and Technology Multidisciplinary-Multidisciplinary
CiteScore
0.80
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊介绍: The Walailak Journal of Science and Technology (Walailak J. Sci. & Tech. or WJST), is a peer-reviewed journal covering all areas of science and technology, launched in 2004. It is published 12 Issues (Monthly) by the Institute of Research and Innovation of Walailak University. The scope of the journal includes the following areas of research : - Natural Sciences: Biochemistry, Chemical Engineering, Chemistry, Materials Science, Mathematics, Molecular Biology, Physics and Astronomy. -Life Sciences: Allied Health Sciences, Biomedical Sciences, Dentistry, Genetics, Immunology and Microbiology, Medicine, Neuroscience, Nursing, Pharmaceutics, Psychology, Public Health, Tropical Medicine, Veterinary. -Applied Sciences: Agricultural, Aquaculture, Biotechnology, Computer Science, Cybernetics, Earth and Planetary, Energy, Engineering, Environmental, Food Science, Information Technology, Meat Science, Nanotechnology, Plant Sciences, Systemics
期刊最新文献
Automatic Screening of Lung Diseases by 3D Active Contour Method for Inhomogeneous Motion Estimation in CT Image Pairs Development and Validation of Corona Virus Anxiety Scale (CVAS) At-Home Activities and Subjective Well-Being of Foreign College Students in Thailand during the COVID-19 Pandemic Outbreak The Antiviral Activity of Andrographolide, the Active Metabolite from Andrographis paniculata (Burm. f.) Wall. ex Nees. against SARS-CoV-2 by Using Bio- and Chemoinformatic Tools The Distribution of COVID 19 based on Phylogeny Construction in Silico Sequences SARS-CoV-2 RNA at Genbank NCBI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1