伊拉克库尔德斯坦地区扎格罗斯西北部构造演化及其对石油运移的影响

Geoarabia Pub Date : 2012-04-01 DOI:10.2113/geoarabia170281
Csontos László, Sasvári Ágoston, P. Tamas, Kósa László, Azad T. Salae, A. Athar
{"title":"伊拉克库尔德斯坦地区扎格罗斯西北部构造演化及其对石油运移的影响","authors":"Csontos László, Sasvári Ágoston, P. Tamas, Kósa László, Azad T. Salae, A. Athar","doi":"10.2113/geoarabia170281","DOIUrl":null,"url":null,"abstract":"\n The studied area in Kurdistan Region of Iraq lies across an important topographic/structural boundary between the southern lowlands and the northern, folded and imbricated Zagros Mountains. It also encompasses a prominent change in structural orientation of the northern Zagros, from a general NW-SE “Zagros” to an E-W “Taurus” trend. Geological mapping and structural observations, both in the mountains (Mesozoic–Palaeogene) and in the lowlands (Neogene), led to the following conclusions. (1) The oldest recorded deformation is a layer-parallel shortening, coupled with southwest-vergent shear that was followed by major folding of ca. 10 km wavelength and ca. 1,000 m amplitude. Even the Upper Miocene–Pliocene Bakhtiari Formation has steep to overturned beds in some parts, and synclines preserve syn-tectonic strata of Neogene–Pliocene age. Box folding is associated with crestal collapse, internal thrusting in the core and with formation of systematic joint sets. (2) On the southern limb of the major folds, thrusting of variable offset can be observed. The thrusts on the southern and northern limbs are considered responsible for the major uplift during main folding. (3) En-échelon fold-relay patterns suggest left-lateral shear along the EW-oriented segment and right-lateral shear along the NW-oriented segment. (4) A quick-look qualitative analysis of striated fault planes suggests a variable shortening trend from NE-SW to N-S, and some rare NW-SE shortening all associated with thrust faults. (5) The general structural setting of the area is linked to the north-eastwards to northwards propagation of the Arabian Margin beneath Eurasia. The ca. 30° bend in the mountain chain may be explained by the original shape of the Arabian Margin, or by pre-existing tectonic zones of E-W orientation in the northern part. Several observations suggest that there was no oroclinal bending (i.e. major rotation) of different parts of the chain, but the structures simply molded on their local buttress (almost) according to present orientations. However, a limited amount of rigid-body rotation in the different segments cannot be ruled out. The changing shortening directions generated several structural combinations on both the NW-SE Zagros and the E-W Taurus segments of the arc, many of which are still preserved. (6) Spectacular bitumen seepage in Upper Cretaceous and Palaeocene limestone originates from fractures or geodes of these formations. Many of these bitumen-filled voids are linked to the above-described Late Neogene–Recent shortening-folding process; therefore hydrocarbon migration into these voids is interpreted to be very young. This contradicts earlier ideas about massive Late Cretaceous breaching and bleeding off of hydrocarbons in this region.","PeriodicalId":55118,"journal":{"name":"Geoarabia","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Structural evolution of the northwestern Zagros, Kurdistan Region, Iraq: Implications on oil migration\",\"authors\":\"Csontos László, Sasvári Ágoston, P. Tamas, Kósa László, Azad T. Salae, A. Athar\",\"doi\":\"10.2113/geoarabia170281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The studied area in Kurdistan Region of Iraq lies across an important topographic/structural boundary between the southern lowlands and the northern, folded and imbricated Zagros Mountains. It also encompasses a prominent change in structural orientation of the northern Zagros, from a general NW-SE “Zagros” to an E-W “Taurus” trend. Geological mapping and structural observations, both in the mountains (Mesozoic–Palaeogene) and in the lowlands (Neogene), led to the following conclusions. (1) The oldest recorded deformation is a layer-parallel shortening, coupled with southwest-vergent shear that was followed by major folding of ca. 10 km wavelength and ca. 1,000 m amplitude. Even the Upper Miocene–Pliocene Bakhtiari Formation has steep to overturned beds in some parts, and synclines preserve syn-tectonic strata of Neogene–Pliocene age. Box folding is associated with crestal collapse, internal thrusting in the core and with formation of systematic joint sets. (2) On the southern limb of the major folds, thrusting of variable offset can be observed. The thrusts on the southern and northern limbs are considered responsible for the major uplift during main folding. (3) En-échelon fold-relay patterns suggest left-lateral shear along the EW-oriented segment and right-lateral shear along the NW-oriented segment. (4) A quick-look qualitative analysis of striated fault planes suggests a variable shortening trend from NE-SW to N-S, and some rare NW-SE shortening all associated with thrust faults. (5) The general structural setting of the area is linked to the north-eastwards to northwards propagation of the Arabian Margin beneath Eurasia. The ca. 30° bend in the mountain chain may be explained by the original shape of the Arabian Margin, or by pre-existing tectonic zones of E-W orientation in the northern part. Several observations suggest that there was no oroclinal bending (i.e. major rotation) of different parts of the chain, but the structures simply molded on their local buttress (almost) according to present orientations. However, a limited amount of rigid-body rotation in the different segments cannot be ruled out. The changing shortening directions generated several structural combinations on both the NW-SE Zagros and the E-W Taurus segments of the arc, many of which are still preserved. (6) Spectacular bitumen seepage in Upper Cretaceous and Palaeocene limestone originates from fractures or geodes of these formations. Many of these bitumen-filled voids are linked to the above-described Late Neogene–Recent shortening-folding process; therefore hydrocarbon migration into these voids is interpreted to be very young. This contradicts earlier ideas about massive Late Cretaceous breaching and bleeding off of hydrocarbons in this region.\",\"PeriodicalId\":55118,\"journal\":{\"name\":\"Geoarabia\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoarabia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2113/geoarabia170281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoarabia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2113/geoarabia170281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

研究区位于伊拉克库尔德斯坦地区,横跨南部低地和北部褶皱叠瓦状扎格罗斯山脉之间的重要地形/构造边界。它还包含了北扎格罗斯构造方向的显著变化,从一般的西北-东南“扎格罗斯”走向到东西向的“金牛座”走向。在山区(中生代-古近纪)和低地(新近纪)进行的地质填图和构造观测得出以下结论:(1)最古老的变形记录是层平行缩短,加上西南向切变,随后是波长约10 km,振幅约1000 m的大褶皱。甚至上中新世—上新世巴赫蒂亚里组也有部分陡至翻倒的地层,向斜保存着新第三纪—上新世的同构造地层。盒状褶皱与峰顶崩塌、岩心内部逆冲以及系统节理组的形成有关。(2)在主要褶皱南翼可观测到变偏置逆冲。在主褶皱期间,南支和北支的逆冲被认为是主要隆升的原因。(3) En- samchelon褶皱接力模式表现为ew向段的左侧剪切和nw向段的右侧剪切。(4)对断面进行快速定性分析,显示出从NE-SW到N-S的变短趋势,少数NW-SE的变短与逆冲断层有关。(5)该地区的总体构造背景与欧亚大陆下方阿拉伯边缘的东北向北扩张有关。山链的约30°弯曲可以用阿拉伯边缘的原始形状或北部已存在的东西向构造带来解释。一些观察结果表明,链的不同部分没有发生斜向弯曲(即主要旋转),但结构只是简单地(几乎)根据目前的方向在其局部支撑上成型。然而,不能排除不同节段中有限数量的刚体旋转。缩短方向的变化在Zagros的NW-SE段和金牛座的E-W段产生了许多结构组合,其中许多仍然保存下来。(6)上白垩统和古新统石灰岩中沥青渗漏现象突出,其成因是这些地层的裂缝或晶洞。许多沥青充填的孔隙与上述晚新近纪-新近期的缩短-褶皱作用有关;因此,碳氢化合物进入这些空隙的迁移被解释为非常年轻。这与之前关于该地区晚白垩世大量破裂和泄漏碳氢化合物的观点相矛盾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural evolution of the northwestern Zagros, Kurdistan Region, Iraq: Implications on oil migration
The studied area in Kurdistan Region of Iraq lies across an important topographic/structural boundary between the southern lowlands and the northern, folded and imbricated Zagros Mountains. It also encompasses a prominent change in structural orientation of the northern Zagros, from a general NW-SE “Zagros” to an E-W “Taurus” trend. Geological mapping and structural observations, both in the mountains (Mesozoic–Palaeogene) and in the lowlands (Neogene), led to the following conclusions. (1) The oldest recorded deformation is a layer-parallel shortening, coupled with southwest-vergent shear that was followed by major folding of ca. 10 km wavelength and ca. 1,000 m amplitude. Even the Upper Miocene–Pliocene Bakhtiari Formation has steep to overturned beds in some parts, and synclines preserve syn-tectonic strata of Neogene–Pliocene age. Box folding is associated with crestal collapse, internal thrusting in the core and with formation of systematic joint sets. (2) On the southern limb of the major folds, thrusting of variable offset can be observed. The thrusts on the southern and northern limbs are considered responsible for the major uplift during main folding. (3) En-échelon fold-relay patterns suggest left-lateral shear along the EW-oriented segment and right-lateral shear along the NW-oriented segment. (4) A quick-look qualitative analysis of striated fault planes suggests a variable shortening trend from NE-SW to N-S, and some rare NW-SE shortening all associated with thrust faults. (5) The general structural setting of the area is linked to the north-eastwards to northwards propagation of the Arabian Margin beneath Eurasia. The ca. 30° bend in the mountain chain may be explained by the original shape of the Arabian Margin, or by pre-existing tectonic zones of E-W orientation in the northern part. Several observations suggest that there was no oroclinal bending (i.e. major rotation) of different parts of the chain, but the structures simply molded on their local buttress (almost) according to present orientations. However, a limited amount of rigid-body rotation in the different segments cannot be ruled out. The changing shortening directions generated several structural combinations on both the NW-SE Zagros and the E-W Taurus segments of the arc, many of which are still preserved. (6) Spectacular bitumen seepage in Upper Cretaceous and Palaeocene limestone originates from fractures or geodes of these formations. Many of these bitumen-filled voids are linked to the above-described Late Neogene–Recent shortening-folding process; therefore hydrocarbon migration into these voids is interpreted to be very young. This contradicts earlier ideas about massive Late Cretaceous breaching and bleeding off of hydrocarbons in this region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geoarabia
Geoarabia 地学-地球科学综合
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation. Published from 1996 to 2015, GeoArabia, The Journal of the Middle Eastern Geosciences was a quarterly journal covering the petroleum geosciences in the Middle East. The journal covers subjects such as: - sedimentology - tectonics - geophysics - petroleum reservoir characterization
期刊最新文献
Repairing the Aged Parkinsonian Striatum: Lessons from the Lab and Clinic. Facies analysis and sequence stratigraphy of the uppermost Jurassic– Lower Cretaceous Sulaiy Formation in outcrops of central Saudi Arabia Multi-level stratigraphic heterogeneities in a Triassic shoal grainstone, Oman Mountains, Sultanate of Oman: Layer-cake or shingles? Diagenesis of a light, tight-oil chert reservoir at the Ediacaran/Cambrian boundary, Sultanate of Oman History of hydrocarbon exploration in the Kurdistan Region of Iraq
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1