东地中海磷质巨岩:构造与上升流的相互作用

Geoarabia Pub Date : 2013-04-01 DOI:10.2113/geoarabia180267
A. Abed
{"title":"东地中海磷质巨岩:构造与上升流的相互作用","authors":"A. Abed","doi":"10.2113/geoarabia180267","DOIUrl":null,"url":null,"abstract":"\n About 20 billion tonnes of world-class, high-grade phosphorite resources occur in a small area of the eastern Mediterranean region, including Jordan, northern Negev (Palestine), northwestern Saudi Arabia, western Iraq, and southeastern Syria. Major deposits were formed during Campanian to Eocene times and contribute significantly to the economic development of these countries, particularly Jordan and Syria. The phosphorite deposits consist mainly of reworked granular material. The phosphate particles are peloids, such as pellets, intraclasts, nodules, coated grains and coprolites, and vertebrate fragments (bone and teeth). The phosphorite sequences are associated with extensive bedded chert, porcelanite, and organic-rich marls. The main phosphate mineral is francolite, a carbonate-rich variety of fluorapatite that has a relatively enhanced uranium content as a result of substitution for calcium in its crystal structure.\n Two factors are deemed responsible for the deposition of the phosphorites and their associated chert, porcelanite, and marl within this relatively restricted area. The first was a compressional event associated with the initial collision of the oceanic forefront of the Afro-Arabian Plate with the subduction trench of Eurasia that began in Turonian times and continued into the Eocene. This event resulted in gentle folding that produced the Syrian Arc, the Ha’il, Rutba, and Sirhan paleohighs and the Ga’ara Dome, which were loci for the deposition of phosphorites. The second factor was the obstruction and consequent upwelling of oceanic currents by these tectonic highs, enhanced by winds blowing from east to west along the southern platform margin of the Neo-Tethys Ocean. The intense upwelling was associated with the Tethyan Circumglobal Current that flowed along the Afro-Arabian platform on the southern margin of the Neo-Tethys Ocean. In contrast, relatively minor phosphorite deposition took place to the north in southern Europe.\n The upwelling spread cold, nutrient-rich oceanic water from the deep Neo-Tethys Ocean to the surface, thereby enhancing bioproductivity to produce organic-rich sediments. The subsequent authigenesis of phosphorites, their diagenesis and the reworking and winnowing of the phosphorite-rich sediments, concentrated the materials into economic deposits. Phosphorite deposition ended in the Late Eocene following the final collision of the Afro-Arabian Plate with Eurasia. The sub-aerial exposure of this formerly productive shallow-marine platform was the result of the separation of the Arabian Plate from the African Plate during the mid-Miocene.","PeriodicalId":55118,"journal":{"name":"Geoarabia","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"The eastern Mediterranean phosphorite giants: An interplay between tectonics and upwelling\",\"authors\":\"A. Abed\",\"doi\":\"10.2113/geoarabia180267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n About 20 billion tonnes of world-class, high-grade phosphorite resources occur in a small area of the eastern Mediterranean region, including Jordan, northern Negev (Palestine), northwestern Saudi Arabia, western Iraq, and southeastern Syria. Major deposits were formed during Campanian to Eocene times and contribute significantly to the economic development of these countries, particularly Jordan and Syria. The phosphorite deposits consist mainly of reworked granular material. The phosphate particles are peloids, such as pellets, intraclasts, nodules, coated grains and coprolites, and vertebrate fragments (bone and teeth). The phosphorite sequences are associated with extensive bedded chert, porcelanite, and organic-rich marls. The main phosphate mineral is francolite, a carbonate-rich variety of fluorapatite that has a relatively enhanced uranium content as a result of substitution for calcium in its crystal structure.\\n Two factors are deemed responsible for the deposition of the phosphorites and their associated chert, porcelanite, and marl within this relatively restricted area. The first was a compressional event associated with the initial collision of the oceanic forefront of the Afro-Arabian Plate with the subduction trench of Eurasia that began in Turonian times and continued into the Eocene. This event resulted in gentle folding that produced the Syrian Arc, the Ha’il, Rutba, and Sirhan paleohighs and the Ga’ara Dome, which were loci for the deposition of phosphorites. The second factor was the obstruction and consequent upwelling of oceanic currents by these tectonic highs, enhanced by winds blowing from east to west along the southern platform margin of the Neo-Tethys Ocean. The intense upwelling was associated with the Tethyan Circumglobal Current that flowed along the Afro-Arabian platform on the southern margin of the Neo-Tethys Ocean. In contrast, relatively minor phosphorite deposition took place to the north in southern Europe.\\n The upwelling spread cold, nutrient-rich oceanic water from the deep Neo-Tethys Ocean to the surface, thereby enhancing bioproductivity to produce organic-rich sediments. The subsequent authigenesis of phosphorites, their diagenesis and the reworking and winnowing of the phosphorite-rich sediments, concentrated the materials into economic deposits. Phosphorite deposition ended in the Late Eocene following the final collision of the Afro-Arabian Plate with Eurasia. The sub-aerial exposure of this formerly productive shallow-marine platform was the result of the separation of the Arabian Plate from the African Plate during the mid-Miocene.\",\"PeriodicalId\":55118,\"journal\":{\"name\":\"Geoarabia\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoarabia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2113/geoarabia180267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoarabia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2113/geoarabia180267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

摘要

约200亿吨世界级高品位磷矿资源分布在地中海东部地区的一小块区域,包括约旦、内盖夫北部(巴勒斯坦)、沙特阿拉伯西北部、伊拉克西部和叙利亚东南部。主要矿床形成于坎帕期至始新世,对这些国家,特别是约旦和叙利亚的经济发展作出了重大贡献。磷矿床主要由再加工的粒状物质组成。磷酸盐颗粒为似球粒,如颗粒、内碎屑、结节、包被颗粒和粪化石,以及脊椎动物碎片(骨和牙齿)。磷矿层序与广泛的层状燧石、瓷质和富有机质泥灰岩有关。主要的磷矿物是氟磷灰石,这是一种富含碳酸盐的氟磷灰石,由于在其晶体结构中取代了钙,因此铀含量相对较高。有两个因素被认为是造成磷岩及其伴生燧石、瓷质和泥灰岩在这个相对有限的区域内沉积的原因。第一次是与非洲-阿拉伯板块的海洋前沿与欧亚大陆的俯冲沟的最初碰撞有关的挤压事件,始于Turonian时期,一直持续到始新世。这一事件导致了温和的褶皱,产生了叙利亚弧、哈伊勒、鲁巴和锡尔汉古隆起和加阿拉穹窿,这些都是磷质沉积的地点。第二个因素是这些构造高点的阻碍和随之而来的洋流上涌,而新特提斯洋南部台地边缘自东向西吹的风又加强了这一点。强烈的上升流与沿新特提斯洋南缘的非洲-阿拉伯地台流动的特提斯环全球流有关。相比之下,相对较小的磷矿沉积发生在欧洲南部的北部。上升流将新特提斯海洋深处的寒冷、富含营养的海水传播到地表,从而提高了生物生产力,产生了富含有机物的沉积物。磷质岩的自生作用、成岩作用以及富磷质沉积物的改造和筛分作用使这些物质集中成为经济矿床。随着非洲-阿拉伯板块与欧亚大陆的最后碰撞,磷矿沉积在始新世晚期结束。阿拉伯板块与非洲板块在中新世中期分离的结果是这个以前多产的浅海地台在空中的暴露。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The eastern Mediterranean phosphorite giants: An interplay between tectonics and upwelling
About 20 billion tonnes of world-class, high-grade phosphorite resources occur in a small area of the eastern Mediterranean region, including Jordan, northern Negev (Palestine), northwestern Saudi Arabia, western Iraq, and southeastern Syria. Major deposits were formed during Campanian to Eocene times and contribute significantly to the economic development of these countries, particularly Jordan and Syria. The phosphorite deposits consist mainly of reworked granular material. The phosphate particles are peloids, such as pellets, intraclasts, nodules, coated grains and coprolites, and vertebrate fragments (bone and teeth). The phosphorite sequences are associated with extensive bedded chert, porcelanite, and organic-rich marls. The main phosphate mineral is francolite, a carbonate-rich variety of fluorapatite that has a relatively enhanced uranium content as a result of substitution for calcium in its crystal structure. Two factors are deemed responsible for the deposition of the phosphorites and their associated chert, porcelanite, and marl within this relatively restricted area. The first was a compressional event associated with the initial collision of the oceanic forefront of the Afro-Arabian Plate with the subduction trench of Eurasia that began in Turonian times and continued into the Eocene. This event resulted in gentle folding that produced the Syrian Arc, the Ha’il, Rutba, and Sirhan paleohighs and the Ga’ara Dome, which were loci for the deposition of phosphorites. The second factor was the obstruction and consequent upwelling of oceanic currents by these tectonic highs, enhanced by winds blowing from east to west along the southern platform margin of the Neo-Tethys Ocean. The intense upwelling was associated with the Tethyan Circumglobal Current that flowed along the Afro-Arabian platform on the southern margin of the Neo-Tethys Ocean. In contrast, relatively minor phosphorite deposition took place to the north in southern Europe. The upwelling spread cold, nutrient-rich oceanic water from the deep Neo-Tethys Ocean to the surface, thereby enhancing bioproductivity to produce organic-rich sediments. The subsequent authigenesis of phosphorites, their diagenesis and the reworking and winnowing of the phosphorite-rich sediments, concentrated the materials into economic deposits. Phosphorite deposition ended in the Late Eocene following the final collision of the Afro-Arabian Plate with Eurasia. The sub-aerial exposure of this formerly productive shallow-marine platform was the result of the separation of the Arabian Plate from the African Plate during the mid-Miocene.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geoarabia
Geoarabia 地学-地球科学综合
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation. Published from 1996 to 2015, GeoArabia, The Journal of the Middle Eastern Geosciences was a quarterly journal covering the petroleum geosciences in the Middle East. The journal covers subjects such as: - sedimentology - tectonics - geophysics - petroleum reservoir characterization
期刊最新文献
Repairing the Aged Parkinsonian Striatum: Lessons from the Lab and Clinic. Facies analysis and sequence stratigraphy of the uppermost Jurassic– Lower Cretaceous Sulaiy Formation in outcrops of central Saudi Arabia Multi-level stratigraphic heterogeneities in a Triassic shoal grainstone, Oman Mountains, Sultanate of Oman: Layer-cake or shingles? Diagenesis of a light, tight-oil chert reservoir at the Ediacaran/Cambrian boundary, Sultanate of Oman History of hydrocarbon exploration in the Kurdistan Region of Iraq
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1