E. Zanetti, C. Bignardi, M. Terzini, G. Putame, A. Audenino
{"title":"基于运动范围的髋关节置换术优化多体模型","authors":"E. Zanetti, C. Bignardi, M. Terzini, G. Putame, A. Audenino","doi":"10.21767/AMJ.2018.3444","DOIUrl":null,"url":null,"abstract":"Background The dislocation of the prosthesized hip is a relevant postoperative complication; this adverse outcome is dependent on the specific patient anatomy and on the artificial joint design. The geometry of the reconstructed hip is one of the key factors and it is usually designed at the time of the preoperative planning when the stem model and size, the head diameter and its offset, and the acetabular cup orientation are selected. Aims In this work, the authors have developed a numerical model to support the pre-operative planning, allowing assessing the hip range of motion, once the geometry of the implant has been defined. Methods A multi-body model of a prosthesized hip has been developed, and a dislocating movement has been applied; the software is able to assess the entity of displacements and of applied forces which can produce hip dislocation.","PeriodicalId":46823,"journal":{"name":"Australasian Medical Journal","volume":"11 1","pages":"486-491"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A multibody model for the optimization of hip arthroplasty in relation to range of movement\",\"authors\":\"E. Zanetti, C. Bignardi, M. Terzini, G. Putame, A. Audenino\",\"doi\":\"10.21767/AMJ.2018.3444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background The dislocation of the prosthesized hip is a relevant postoperative complication; this adverse outcome is dependent on the specific patient anatomy and on the artificial joint design. The geometry of the reconstructed hip is one of the key factors and it is usually designed at the time of the preoperative planning when the stem model and size, the head diameter and its offset, and the acetabular cup orientation are selected. Aims In this work, the authors have developed a numerical model to support the pre-operative planning, allowing assessing the hip range of motion, once the geometry of the implant has been defined. Methods A multi-body model of a prosthesized hip has been developed, and a dislocating movement has been applied; the software is able to assess the entity of displacements and of applied forces which can produce hip dislocation.\",\"PeriodicalId\":46823,\"journal\":{\"name\":\"Australasian Medical Journal\",\"volume\":\"11 1\",\"pages\":\"486-491\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australasian Medical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21767/AMJ.2018.3444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australasian Medical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21767/AMJ.2018.3444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A multibody model for the optimization of hip arthroplasty in relation to range of movement
Background The dislocation of the prosthesized hip is a relevant postoperative complication; this adverse outcome is dependent on the specific patient anatomy and on the artificial joint design. The geometry of the reconstructed hip is one of the key factors and it is usually designed at the time of the preoperative planning when the stem model and size, the head diameter and its offset, and the acetabular cup orientation are selected. Aims In this work, the authors have developed a numerical model to support the pre-operative planning, allowing assessing the hip range of motion, once the geometry of the implant has been defined. Methods A multi-body model of a prosthesized hip has been developed, and a dislocating movement has been applied; the software is able to assess the entity of displacements and of applied forces which can produce hip dislocation.