{"title":"利用诱导多能干细胞治疗脊髓损伤的再生医学。","authors":"Narihito Nagoshi, Keiko Sugai, Hideyuki Okano, Masaya Nakamura","doi":"10.22603/ssrr.2023-0135","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord injury (SCI) is a devastating injury that causes permanent neurological dysfunction. To develop a new treatment strategy for SCI, a clinical trial of transplantation of human-induced pluripotent stem cell-derived neural precursor cells (NPCs) in patients in the subacute phase of SCI was recently initiated. The formation of synaptic connections with host neural tissues is one of the therapeutic mechanisms of cell transplantation, and this beneficial efficacy has been directly demonstrated using a chemogenetic tool. This research focuses on the establishment of cell therapy for chronic SCI, which is more challenging owing to cavity and scar formation. Thus, neurogenic NPC transplantation is more effective in forming functional synapses with the host neurons. Furthermore, combinatory rehabilitation therapy is useful to enhance the efficacy of this strategy, and a valid rehabilitative training program has been established for SCI animal models that received NPC transplantation in the chronic phase. Therefore, the use of regenerative medicine for chronic SCI is expected to increase.</p>","PeriodicalId":22253,"journal":{"name":"Spine Surgery and Related Research","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10853617/pdf/","citationCount":"0","resultStr":"{\"title\":\"Regenerative Medicine for Spinal Cord Injury Using Induced Pluripotent Stem Cells.\",\"authors\":\"Narihito Nagoshi, Keiko Sugai, Hideyuki Okano, Masaya Nakamura\",\"doi\":\"10.22603/ssrr.2023-0135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spinal cord injury (SCI) is a devastating injury that causes permanent neurological dysfunction. To develop a new treatment strategy for SCI, a clinical trial of transplantation of human-induced pluripotent stem cell-derived neural precursor cells (NPCs) in patients in the subacute phase of SCI was recently initiated. The formation of synaptic connections with host neural tissues is one of the therapeutic mechanisms of cell transplantation, and this beneficial efficacy has been directly demonstrated using a chemogenetic tool. This research focuses on the establishment of cell therapy for chronic SCI, which is more challenging owing to cavity and scar formation. Thus, neurogenic NPC transplantation is more effective in forming functional synapses with the host neurons. Furthermore, combinatory rehabilitation therapy is useful to enhance the efficacy of this strategy, and a valid rehabilitative training program has been established for SCI animal models that received NPC transplantation in the chronic phase. Therefore, the use of regenerative medicine for chronic SCI is expected to increase.</p>\",\"PeriodicalId\":22253,\"journal\":{\"name\":\"Spine Surgery and Related Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10853617/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spine Surgery and Related Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22603/ssrr.2023-0135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/27 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spine Surgery and Related Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22603/ssrr.2023-0135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/27 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"SURGERY","Score":null,"Total":0}
Regenerative Medicine for Spinal Cord Injury Using Induced Pluripotent Stem Cells.
Spinal cord injury (SCI) is a devastating injury that causes permanent neurological dysfunction. To develop a new treatment strategy for SCI, a clinical trial of transplantation of human-induced pluripotent stem cell-derived neural precursor cells (NPCs) in patients in the subacute phase of SCI was recently initiated. The formation of synaptic connections with host neural tissues is one of the therapeutic mechanisms of cell transplantation, and this beneficial efficacy has been directly demonstrated using a chemogenetic tool. This research focuses on the establishment of cell therapy for chronic SCI, which is more challenging owing to cavity and scar formation. Thus, neurogenic NPC transplantation is more effective in forming functional synapses with the host neurons. Furthermore, combinatory rehabilitation therapy is useful to enhance the efficacy of this strategy, and a valid rehabilitative training program has been established for SCI animal models that received NPC transplantation in the chronic phase. Therefore, the use of regenerative medicine for chronic SCI is expected to increase.