E. Peres, Mayane P. Souza, T. Sousa, C. da Silva, A. Barros, F. D. da Silva, E. Costa, L. D. de Medeiros, M. Forim, A. D. de Souza, Weider H. P. Paz, G. D. da Silva, A. D. de Souza, H. Koolen
{"title":"LC-MS/MS分析及分子网络技术对梅利蓬青霉类核蛋白氮杂啉类化合物的脱皮作用","authors":"E. Peres, Mayane P. Souza, T. Sousa, C. da Silva, A. Barros, F. D. da Silva, E. Costa, L. D. de Medeiros, M. Forim, A. D. de Souza, Weider H. P. Paz, G. D. da Silva, A. D. de Souza, H. Koolen","doi":"10.21577/0103-5053.20230027","DOIUrl":null,"url":null,"abstract":"Penicillium meliponae, a recently described and rare species, was isolated as an endophytic fungus from the Amazonian plant Duguetia sthelechantha, and has been proven to be a pigment producer. Considering the high productivity of this species and the lack of data on its chemical composition, the present study aimed to characterize the chemical profile of P. meliponae and evaluate the influence of agitation and the use of different culture media. For this purpose, liquid chromatography coupled with mass spectrometry (LC-MS/MS) and molecular networking were used, allowing the identification of 17 azaphilone molecules with sclerotiorin-like skeletons, becoming the first chemical report of this species. In addition, the different production patterns in the tested culture media were indicative that this species is sensitive to changes in the composition of the carbon source and to the presence of agitation. Furthermore, this work contributes to the fragmentation mechanisms of the different possible structural arrangements for azaphilones of the sclerotiorin type and serves as a repository of information on the gas-phase behavior of this type of metabolite in mass spectrometry experiments and will assist future studies aimed at the discovery of azaphilones.","PeriodicalId":17257,"journal":{"name":"Journal of the Brazilian Chemical Society","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dereplication of Sclerotiorin-Like Azaphilones Produced by Penicillium meliponae Using LC-MS/MS Analysis and Molecular Networking\",\"authors\":\"E. Peres, Mayane P. Souza, T. Sousa, C. da Silva, A. Barros, F. D. da Silva, E. Costa, L. D. de Medeiros, M. Forim, A. D. de Souza, Weider H. P. Paz, G. D. da Silva, A. D. de Souza, H. Koolen\",\"doi\":\"10.21577/0103-5053.20230027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Penicillium meliponae, a recently described and rare species, was isolated as an endophytic fungus from the Amazonian plant Duguetia sthelechantha, and has been proven to be a pigment producer. Considering the high productivity of this species and the lack of data on its chemical composition, the present study aimed to characterize the chemical profile of P. meliponae and evaluate the influence of agitation and the use of different culture media. For this purpose, liquid chromatography coupled with mass spectrometry (LC-MS/MS) and molecular networking were used, allowing the identification of 17 azaphilone molecules with sclerotiorin-like skeletons, becoming the first chemical report of this species. In addition, the different production patterns in the tested culture media were indicative that this species is sensitive to changes in the composition of the carbon source and to the presence of agitation. Furthermore, this work contributes to the fragmentation mechanisms of the different possible structural arrangements for azaphilones of the sclerotiorin type and serves as a repository of information on the gas-phase behavior of this type of metabolite in mass spectrometry experiments and will assist future studies aimed at the discovery of azaphilones.\",\"PeriodicalId\":17257,\"journal\":{\"name\":\"Journal of the Brazilian Chemical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Brazilian Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.21577/0103-5053.20230027\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Brazilian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.21577/0103-5053.20230027","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dereplication of Sclerotiorin-Like Azaphilones Produced by Penicillium meliponae Using LC-MS/MS Analysis and Molecular Networking
Penicillium meliponae, a recently described and rare species, was isolated as an endophytic fungus from the Amazonian plant Duguetia sthelechantha, and has been proven to be a pigment producer. Considering the high productivity of this species and the lack of data on its chemical composition, the present study aimed to characterize the chemical profile of P. meliponae and evaluate the influence of agitation and the use of different culture media. For this purpose, liquid chromatography coupled with mass spectrometry (LC-MS/MS) and molecular networking were used, allowing the identification of 17 azaphilone molecules with sclerotiorin-like skeletons, becoming the first chemical report of this species. In addition, the different production patterns in the tested culture media were indicative that this species is sensitive to changes in the composition of the carbon source and to the presence of agitation. Furthermore, this work contributes to the fragmentation mechanisms of the different possible structural arrangements for azaphilones of the sclerotiorin type and serves as a repository of information on the gas-phase behavior of this type of metabolite in mass spectrometry experiments and will assist future studies aimed at the discovery of azaphilones.
期刊介绍:
The Journal of the Brazilian Chemical Society embraces all aspects of chemistry except education, philosophy and history of chemistry. It is a medium for reporting selected original and significant contributions to new chemical knowledge.