添加剂存在下钴电积的伏安法研究

IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of the Brazilian Chemical Society Pub Date : 2023-08-25 DOI:10.21577/0103-5053.20230048
{"title":"添加剂存在下钴电积的伏安法研究","authors":"","doi":"10.21577/0103-5053.20230048","DOIUrl":null,"url":null,"abstract":"Cobalt electrowinning is an intensive energy-consuming process, and allied to the increasing demand for pure cobalt, has led to the need for optimization. Based on a statistical approach, the effects of additives, including sodium lauryl sulfate (SLS), boric acid (H3BO3), and cobalt chloride (CoCl2) on the current efficiency of electrowinning have been studied using the cyclic voltammetry (CV). CV tests indicated the concentration range of the more appropriate additives to be used in the factorial design study of electrowinning. Regarding the electrowinning tests, the addition of 0.05 g L-1 SLS, 10 g L-1 H3BO3, 50 g L-1 Na2SO4, and 1 g L-1 CoCl2 led to a current efficiency of 96% and energy consumption of 1.95 kWh kg-1, along with a smooth metallic deposit without evident pits and other defects. SLS in its higher concentration level led to the formation of compact structures, while the higher concentration level of H3BO3, lightens the deposits.","PeriodicalId":17257,"journal":{"name":"Journal of the Brazilian Chemical Society","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Voltammetric Study on the Electrowinning of Cobalt in the Presence of Additives\",\"authors\":\"\",\"doi\":\"10.21577/0103-5053.20230048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cobalt electrowinning is an intensive energy-consuming process, and allied to the increasing demand for pure cobalt, has led to the need for optimization. Based on a statistical approach, the effects of additives, including sodium lauryl sulfate (SLS), boric acid (H3BO3), and cobalt chloride (CoCl2) on the current efficiency of electrowinning have been studied using the cyclic voltammetry (CV). CV tests indicated the concentration range of the more appropriate additives to be used in the factorial design study of electrowinning. Regarding the electrowinning tests, the addition of 0.05 g L-1 SLS, 10 g L-1 H3BO3, 50 g L-1 Na2SO4, and 1 g L-1 CoCl2 led to a current efficiency of 96% and energy consumption of 1.95 kWh kg-1, along with a smooth metallic deposit without evident pits and other defects. SLS in its higher concentration level led to the formation of compact structures, while the higher concentration level of H3BO3, lightens the deposits.\",\"PeriodicalId\":17257,\"journal\":{\"name\":\"Journal of the Brazilian Chemical Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Brazilian Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.21577/0103-5053.20230048\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Brazilian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.21577/0103-5053.20230048","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

电积钴是一个密集的能源消耗过程,随着对纯钴需求的增加,导致需要优化。采用循环伏安法(CV)研究了十二烷基硫酸钠(SLS)、硼酸(H3BO3)和氯化钴(CoCl2)等添加剂对电积电流效率的影响。CV试验为电积析因设计研究提供了较合适的添加剂浓度范围。在电积试验中,加入0.05 g L-1 SLS、10 g L-1 H3BO3、50 g L-1 Na2SO4和1 g L-1 CoCl2,电流效率为96%,能耗为1.95 kWh kg-1,镀层光滑,无明显凹坑等缺陷。SLS浓度越高,构造越致密,H3BO3浓度越高,沉积越轻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Voltammetric Study on the Electrowinning of Cobalt in the Presence of Additives
Cobalt electrowinning is an intensive energy-consuming process, and allied to the increasing demand for pure cobalt, has led to the need for optimization. Based on a statistical approach, the effects of additives, including sodium lauryl sulfate (SLS), boric acid (H3BO3), and cobalt chloride (CoCl2) on the current efficiency of electrowinning have been studied using the cyclic voltammetry (CV). CV tests indicated the concentration range of the more appropriate additives to be used in the factorial design study of electrowinning. Regarding the electrowinning tests, the addition of 0.05 g L-1 SLS, 10 g L-1 H3BO3, 50 g L-1 Na2SO4, and 1 g L-1 CoCl2 led to a current efficiency of 96% and energy consumption of 1.95 kWh kg-1, along with a smooth metallic deposit without evident pits and other defects. SLS in its higher concentration level led to the formation of compact structures, while the higher concentration level of H3BO3, lightens the deposits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
7.10%
发文量
99
审稿时长
3.4 months
期刊介绍: The Journal of the Brazilian Chemical Society embraces all aspects of chemistry except education, philosophy and history of chemistry. It is a medium for reporting selected original and significant contributions to new chemical knowledge.
期刊最新文献
Quantitative GC-MS Analysis of Sawdust Bio-Oil A New Molecularly Imprinted Polymer for In-Tube SPME/UHPLC-MS/MS of Anandamide in Plasma Samples Evaluation of Extraction Parameters for the Analysis of Lipid Classes in Plants Polyvinyl Alcohol/Pectin-Based Hydrogel as Sorptive Phase for the Determination of Freely Dissolved Parabens in Urine Samples by LC-DAD Evaluation of Polymer Self-Coating on Aluminized Silica Support as Stationary Phase for High-Performance Liquid Chromatography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1