N. Durán, W. Fávaro, S. Alborés, Thyerre da Costa, L. Tasić
{"title":"生物纳米银与蛋白质封顶:时间知识和观点","authors":"N. Durán, W. Fávaro, S. Alborés, Thyerre da Costa, L. Tasić","doi":"10.21577/0103-5053.20230062","DOIUrl":null,"url":null,"abstract":"Biogenic silver nanoparticles are synthesized through silver(I) reduction, which is promoted by biomolecules available in the biological world and mostly obtained from plant extracts, fungal bioproduction, and some bacteria. The exact mechanisms accounting for such oxidoreduction processes are not fully known. However, some studies have already mentioned oxidoreductases, cofactors (nicotinamide adenine dinucelotide hydrogen (NADH), dihydroflavine-adenine dinucleotid (FADH2)), and phenolic compounds, as the main reductive species engaged in the formation of silver(0) and silver nanoparticles (silver NPs) synthesis. Biosynthesis is a one-pot process that leads to stable silver NP colloids that, regarding their size, shape, and uniformity, can be successfully controlled; and show great stability when one takes into account their surface capping by some biomolecules that as well take part in their synthesis. Although great efforts have been made to feature capping biomolecules and their interactions with silver NP surfaces, knowledge of the quantity (exact number per cm2 ) and type of biomolecules that cap or surround silver NPs remains limited. The literature provides detailed information on protein capping, but it still shows gaps regarding many aspects of fine biophysical protein featuring. The reason why certain proteins prefer to interact with silver NP surface and form chemical bonds, whereas others rather have intermolecular interaction with the first layer of proteins remains unknown. Assessing capping proteins’ involvement in the bioactivity of biogenic silver NPs is another relevant research field. Certain proteins enhance bioactivity of silver NPs and lower toxicity; however, the way antimicrobial processes benefit from protein capping is yet to be discovered. Finally, biogenic silver NPs can be found both in the environment and in water; moreover, their additional activity and behavior must be known or, at least, hypothesized.","PeriodicalId":17257,"journal":{"name":"Journal of the Brazilian Chemical Society","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Biogenic Silver Nanoparticles Capped with Proteins: Timed Knowledge and Perspectives\",\"authors\":\"N. Durán, W. Fávaro, S. Alborés, Thyerre da Costa, L. Tasić\",\"doi\":\"10.21577/0103-5053.20230062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biogenic silver nanoparticles are synthesized through silver(I) reduction, which is promoted by biomolecules available in the biological world and mostly obtained from plant extracts, fungal bioproduction, and some bacteria. The exact mechanisms accounting for such oxidoreduction processes are not fully known. However, some studies have already mentioned oxidoreductases, cofactors (nicotinamide adenine dinucelotide hydrogen (NADH), dihydroflavine-adenine dinucleotid (FADH2)), and phenolic compounds, as the main reductive species engaged in the formation of silver(0) and silver nanoparticles (silver NPs) synthesis. Biosynthesis is a one-pot process that leads to stable silver NP colloids that, regarding their size, shape, and uniformity, can be successfully controlled; and show great stability when one takes into account their surface capping by some biomolecules that as well take part in their synthesis. Although great efforts have been made to feature capping biomolecules and their interactions with silver NP surfaces, knowledge of the quantity (exact number per cm2 ) and type of biomolecules that cap or surround silver NPs remains limited. The literature provides detailed information on protein capping, but it still shows gaps regarding many aspects of fine biophysical protein featuring. The reason why certain proteins prefer to interact with silver NP surface and form chemical bonds, whereas others rather have intermolecular interaction with the first layer of proteins remains unknown. Assessing capping proteins’ involvement in the bioactivity of biogenic silver NPs is another relevant research field. Certain proteins enhance bioactivity of silver NPs and lower toxicity; however, the way antimicrobial processes benefit from protein capping is yet to be discovered. Finally, biogenic silver NPs can be found both in the environment and in water; moreover, their additional activity and behavior must be known or, at least, hypothesized.\",\"PeriodicalId\":17257,\"journal\":{\"name\":\"Journal of the Brazilian Chemical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Brazilian Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.21577/0103-5053.20230062\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Brazilian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.21577/0103-5053.20230062","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Biogenic Silver Nanoparticles Capped with Proteins: Timed Knowledge and Perspectives
Biogenic silver nanoparticles are synthesized through silver(I) reduction, which is promoted by biomolecules available in the biological world and mostly obtained from plant extracts, fungal bioproduction, and some bacteria. The exact mechanisms accounting for such oxidoreduction processes are not fully known. However, some studies have already mentioned oxidoreductases, cofactors (nicotinamide adenine dinucelotide hydrogen (NADH), dihydroflavine-adenine dinucleotid (FADH2)), and phenolic compounds, as the main reductive species engaged in the formation of silver(0) and silver nanoparticles (silver NPs) synthesis. Biosynthesis is a one-pot process that leads to stable silver NP colloids that, regarding their size, shape, and uniformity, can be successfully controlled; and show great stability when one takes into account their surface capping by some biomolecules that as well take part in their synthesis. Although great efforts have been made to feature capping biomolecules and their interactions with silver NP surfaces, knowledge of the quantity (exact number per cm2 ) and type of biomolecules that cap or surround silver NPs remains limited. The literature provides detailed information on protein capping, but it still shows gaps regarding many aspects of fine biophysical protein featuring. The reason why certain proteins prefer to interact with silver NP surface and form chemical bonds, whereas others rather have intermolecular interaction with the first layer of proteins remains unknown. Assessing capping proteins’ involvement in the bioactivity of biogenic silver NPs is another relevant research field. Certain proteins enhance bioactivity of silver NPs and lower toxicity; however, the way antimicrobial processes benefit from protein capping is yet to be discovered. Finally, biogenic silver NPs can be found both in the environment and in water; moreover, their additional activity and behavior must be known or, at least, hypothesized.
期刊介绍:
The Journal of the Brazilian Chemical Society embraces all aspects of chemistry except education, philosophy and history of chemistry. It is a medium for reporting selected original and significant contributions to new chemical knowledge.