芦荟抗自由基和抗光氧化成分的分离与鉴定

Y. Dewi, T. Tranggono, S. Raharjo, Puji Hastuti
{"title":"芦荟抗自由基和抗光氧化成分的分离与鉴定","authors":"Y. Dewi, T. Tranggono, S. Raharjo, Puji Hastuti","doi":"10.22146/JIFNP.30","DOIUrl":null,"url":null,"abstract":"A potent antiradical and antiphotooxidant compound from Aloe vera chinensis was investigated. The results indicated that the methanolic extracts produced stronger antiradical and antiphotoaxidant activity also gave higher yields of extract than other organic solvents. Silica gel column separated methanolic extracts into five fractions. Of the five fractions, fraction II possessed significant antiradical activity (70.2 % inhibition on free radical DPPH) and its showed significant antiphotooxidant activity (60.1 % inhibition on hydroperoxide formation). Subsequently, fraction II was separated into eight subfractions by silica gel column. The sub fraction II-b exhibited stronger antiradical and antiphotooxidant activity than others and showed a single spot in thin layer chromatography Silica gel 60 F 254 plates. On the basis of mass spectrophotometry in combination with reversed phased, high performance chromatography, this compound has been identified as 1,8 dihydroxy-3- hydroxymethylanthraquinone (Aloe emodin).","PeriodicalId":13468,"journal":{"name":"Indonesian Food and Nutrition Progress","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolation and Identification of Antiradical and Anti-photooxidant Component of Aloe vera chinensis\",\"authors\":\"Y. Dewi, T. Tranggono, S. Raharjo, Puji Hastuti\",\"doi\":\"10.22146/JIFNP.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A potent antiradical and antiphotooxidant compound from Aloe vera chinensis was investigated. The results indicated that the methanolic extracts produced stronger antiradical and antiphotoaxidant activity also gave higher yields of extract than other organic solvents. Silica gel column separated methanolic extracts into five fractions. Of the five fractions, fraction II possessed significant antiradical activity (70.2 % inhibition on free radical DPPH) and its showed significant antiphotooxidant activity (60.1 % inhibition on hydroperoxide formation). Subsequently, fraction II was separated into eight subfractions by silica gel column. The sub fraction II-b exhibited stronger antiradical and antiphotooxidant activity than others and showed a single spot in thin layer chromatography Silica gel 60 F 254 plates. On the basis of mass spectrophotometry in combination with reversed phased, high performance chromatography, this compound has been identified as 1,8 dihydroxy-3- hydroxymethylanthraquinone (Aloe emodin).\",\"PeriodicalId\":13468,\"journal\":{\"name\":\"Indonesian Food and Nutrition Progress\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Food and Nutrition Progress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/JIFNP.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Food and Nutrition Progress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/JIFNP.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从芦荟中提取了一种有效的抗自由基和抗光氧化化合物。结果表明,甲醇提取物具有较强的抗自由基和抗光氧化活性,且提取率高于其他有机溶剂。硅胶柱将甲醇提取物分离成五个部分。其中,ⅱ组分对自由基DPPH的抑制率为70.2%,对过氧化氢的抑制率为60.1%。随后,用硅胶柱将组分II分离成8个亚组分。亚组分II-b具有较强的抗自由基和抗光氧化活性,在薄层色谱硅胶60f254板上呈现单斑点。通过质谱联用反相高效色谱法鉴定该化合物为1,8二羟基-3-羟甲基蒽醌(芦荟大黄素)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Isolation and Identification of Antiradical and Anti-photooxidant Component of Aloe vera chinensis
A potent antiradical and antiphotooxidant compound from Aloe vera chinensis was investigated. The results indicated that the methanolic extracts produced stronger antiradical and antiphotoaxidant activity also gave higher yields of extract than other organic solvents. Silica gel column separated methanolic extracts into five fractions. Of the five fractions, fraction II possessed significant antiradical activity (70.2 % inhibition on free radical DPPH) and its showed significant antiphotooxidant activity (60.1 % inhibition on hydroperoxide formation). Subsequently, fraction II was separated into eight subfractions by silica gel column. The sub fraction II-b exhibited stronger antiradical and antiphotooxidant activity than others and showed a single spot in thin layer chromatography Silica gel 60 F 254 plates. On the basis of mass spectrophotometry in combination with reversed phased, high performance chromatography, this compound has been identified as 1,8 dihydroxy-3- hydroxymethylanthraquinone (Aloe emodin).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
8
审稿时长
8 weeks
期刊最新文献
Impact of Breakfast Skipping and Choices on The Nutrient Intake and BMI of University Hostel Students of Lahore The Consumption Effect of Indigenous Probiotic Powder Lactobacillus plantarum Dad-13 on Gut Microbiota Population and Short Chain Fatty Acids in Students of SMPN 1 Pangururan, Samosir Characterization of Fish Skin Hydrolysates Exhibiting Dipeptidyl Peptidase IV Inhibitory Activity Peptide Inhibitors of Angiotensin-I Converting Enzyme (ACE) Bioavailability in Legumes Subjected to Hydrothermal Treatment Effect of The Ratio of Purple Sweet Potato Flour and Rice Crust Flour on The Physical, Chemical, and Sensory Properties of High-Fiber Snack Bar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1