{"title":"PHD2:从缺氧调节到疾病进展","authors":"A. Meneses, B. Wielockx","doi":"10.2147/HP.S53576","DOIUrl":null,"url":null,"abstract":"Oxygen represents one of the major molecules required for the development and maintenance of life. An adequate response to hypoxia is therefore required for the functioning of the majority of living organisms and relies on the activation of the hypoxia-inducible factor (HIF) pathway. HIF prolyl hydroxylase domain-2 (PHD2) has long been recognized as the major regulator of this response, controlling a myriad of outcomes that range from cell death to proliferation. However, this enzyme has been associated with more pathways, making the role of this protein remarkably complex under distinct pathologies. While a protective role seems to exist in physiological conditions such as erythropoiesis; the picture is more complex during pathologies such as cancer. Since the regulation of this enzyme and its closest family members is currently considered as a possible therapy for various diseases, understanding the different particular roles of this protein is essential.","PeriodicalId":73270,"journal":{"name":"Hypoxia (Auckland, N.Z.)","volume":"4 1","pages":"53 - 67"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2147/HP.S53576","citationCount":"54","resultStr":"{\"title\":\"PHD2: from hypoxia regulation to disease progression\",\"authors\":\"A. Meneses, B. Wielockx\",\"doi\":\"10.2147/HP.S53576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oxygen represents one of the major molecules required for the development and maintenance of life. An adequate response to hypoxia is therefore required for the functioning of the majority of living organisms and relies on the activation of the hypoxia-inducible factor (HIF) pathway. HIF prolyl hydroxylase domain-2 (PHD2) has long been recognized as the major regulator of this response, controlling a myriad of outcomes that range from cell death to proliferation. However, this enzyme has been associated with more pathways, making the role of this protein remarkably complex under distinct pathologies. While a protective role seems to exist in physiological conditions such as erythropoiesis; the picture is more complex during pathologies such as cancer. Since the regulation of this enzyme and its closest family members is currently considered as a possible therapy for various diseases, understanding the different particular roles of this protein is essential.\",\"PeriodicalId\":73270,\"journal\":{\"name\":\"Hypoxia (Auckland, N.Z.)\",\"volume\":\"4 1\",\"pages\":\"53 - 67\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2147/HP.S53576\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hypoxia (Auckland, N.Z.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2147/HP.S53576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hypoxia (Auckland, N.Z.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/HP.S53576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PHD2: from hypoxia regulation to disease progression
Oxygen represents one of the major molecules required for the development and maintenance of life. An adequate response to hypoxia is therefore required for the functioning of the majority of living organisms and relies on the activation of the hypoxia-inducible factor (HIF) pathway. HIF prolyl hydroxylase domain-2 (PHD2) has long been recognized as the major regulator of this response, controlling a myriad of outcomes that range from cell death to proliferation. However, this enzyme has been associated with more pathways, making the role of this protein remarkably complex under distinct pathologies. While a protective role seems to exist in physiological conditions such as erythropoiesis; the picture is more complex during pathologies such as cancer. Since the regulation of this enzyme and its closest family members is currently considered as a possible therapy for various diseases, understanding the different particular roles of this protein is essential.