D. Hoogewijs, Melanie Vogler, Eveline Zwenger, Sabine Krull, A. Zieseniss
{"title":"水通道蛋白-3表达的氧依赖性调控","authors":"D. Hoogewijs, Melanie Vogler, Eveline Zwenger, Sabine Krull, A. Zieseniss","doi":"10.2147/HP.S97681","DOIUrl":null,"url":null,"abstract":"The purpose of this study was to investigate whether aquaporin-3 (AQP3) expression is altered in hypoxia and whether hypoxia-inducible transcription factor (HIF)-1 regulates the hypoxic expression. AQP3 mRNA expression was studied in L929 fibrosarcoma cells and in several tissues derived from mice that were subjected to hypoxia. Computational analysis of the AQP3 promoter revealed conserved HIF binding sites within close proximity to the translational start site, and chromatin immunoprecipitation assays confirmed binding of HIF-1α to the endogenous hypoxia response elements. Furthermore, hypoxia resulted in increased expression of AQP3 mRNA in L929 fibrosarcoma cells. Consistently, shRNA-mediated knockdown of HIF-1α greatly reduced the hypoxic induction of AQP3. In addition, mRNA analysis of organs from mice exposed to inspiratory hypoxia demonstrated pronounced hypoxia-inducible expression of AQP3 in the kidney. Overall, our findings suggest that AQP3 expression can be regulated at the transcriptional level and that AQP3 represents a novel HIF-1 target gene.","PeriodicalId":73270,"journal":{"name":"Hypoxia (Auckland, N.Z.)","volume":"4 1","pages":"91 - 97"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2147/HP.S97681","citationCount":"16","resultStr":"{\"title\":\"Oxygen-dependent regulation of aquaporin-3 expression\",\"authors\":\"D. Hoogewijs, Melanie Vogler, Eveline Zwenger, Sabine Krull, A. Zieseniss\",\"doi\":\"10.2147/HP.S97681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this study was to investigate whether aquaporin-3 (AQP3) expression is altered in hypoxia and whether hypoxia-inducible transcription factor (HIF)-1 regulates the hypoxic expression. AQP3 mRNA expression was studied in L929 fibrosarcoma cells and in several tissues derived from mice that were subjected to hypoxia. Computational analysis of the AQP3 promoter revealed conserved HIF binding sites within close proximity to the translational start site, and chromatin immunoprecipitation assays confirmed binding of HIF-1α to the endogenous hypoxia response elements. Furthermore, hypoxia resulted in increased expression of AQP3 mRNA in L929 fibrosarcoma cells. Consistently, shRNA-mediated knockdown of HIF-1α greatly reduced the hypoxic induction of AQP3. In addition, mRNA analysis of organs from mice exposed to inspiratory hypoxia demonstrated pronounced hypoxia-inducible expression of AQP3 in the kidney. Overall, our findings suggest that AQP3 expression can be regulated at the transcriptional level and that AQP3 represents a novel HIF-1 target gene.\",\"PeriodicalId\":73270,\"journal\":{\"name\":\"Hypoxia (Auckland, N.Z.)\",\"volume\":\"4 1\",\"pages\":\"91 - 97\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2147/HP.S97681\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hypoxia (Auckland, N.Z.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2147/HP.S97681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hypoxia (Auckland, N.Z.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/HP.S97681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Oxygen-dependent regulation of aquaporin-3 expression
The purpose of this study was to investigate whether aquaporin-3 (AQP3) expression is altered in hypoxia and whether hypoxia-inducible transcription factor (HIF)-1 regulates the hypoxic expression. AQP3 mRNA expression was studied in L929 fibrosarcoma cells and in several tissues derived from mice that were subjected to hypoxia. Computational analysis of the AQP3 promoter revealed conserved HIF binding sites within close proximity to the translational start site, and chromatin immunoprecipitation assays confirmed binding of HIF-1α to the endogenous hypoxia response elements. Furthermore, hypoxia resulted in increased expression of AQP3 mRNA in L929 fibrosarcoma cells. Consistently, shRNA-mediated knockdown of HIF-1α greatly reduced the hypoxic induction of AQP3. In addition, mRNA analysis of organs from mice exposed to inspiratory hypoxia demonstrated pronounced hypoxia-inducible expression of AQP3 in the kidney. Overall, our findings suggest that AQP3 expression can be regulated at the transcriptional level and that AQP3 represents a novel HIF-1 target gene.