将词汇语义知识纳入主成分分析技术对多语言摘要生成的影响研究

IF 0.3 Q4 LINGUISTICS Linguamatica Pub Date : 2015-07-31 DOI:10.21814/LM.7.1.205
Óscar Alcón, E. Lloret
{"title":"将词汇语义知识纳入主成分分析技术对多语言摘要生成的影响研究","authors":"Óscar Alcón, E. Lloret","doi":"10.21814/LM.7.1.205","DOIUrl":null,"url":null,"abstract":"The objective of automatic text summarization  is to reduce the dimension of a text keeping the relevant information. In this paper we analyse and apply the language-independent Principal Component Analysis technique for generating extractive single-document multilingual summaries. This technique will be studied to evaluate its performance with and without adding lexical-semantic knowledge through language-dependent resources and tools. Experiments were conducted using two different corpora: newswire and Wikipedia articles in three languages (English, German and Spanish) to validate the use of this technique in several scenarios. The proposed approaches show very competitive results compared to multilingual available systems, indicating that, although there is still room for improvement with respect to the technique and the type of knowledge to be taken into consideration, this has great potential for being applied in other contexts and for other languages.","PeriodicalId":41819,"journal":{"name":"Linguamatica","volume":"7 1","pages":"53-63"},"PeriodicalIF":0.3000,"publicationDate":"2015-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Estudio de la influencia de incorporar conocimiento léxico-semántico a la técnica de Análisis de Componentes Principales para la generación de resúmenes multilingües\",\"authors\":\"Óscar Alcón, E. Lloret\",\"doi\":\"10.21814/LM.7.1.205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of automatic text summarization  is to reduce the dimension of a text keeping the relevant information. In this paper we analyse and apply the language-independent Principal Component Analysis technique for generating extractive single-document multilingual summaries. This technique will be studied to evaluate its performance with and without adding lexical-semantic knowledge through language-dependent resources and tools. Experiments were conducted using two different corpora: newswire and Wikipedia articles in three languages (English, German and Spanish) to validate the use of this technique in several scenarios. The proposed approaches show very competitive results compared to multilingual available systems, indicating that, although there is still room for improvement with respect to the technique and the type of knowledge to be taken into consideration, this has great potential for being applied in other contexts and for other languages.\",\"PeriodicalId\":41819,\"journal\":{\"name\":\"Linguamatica\",\"volume\":\"7 1\",\"pages\":\"53-63\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2015-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linguamatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21814/LM.7.1.205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LINGUISTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linguamatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21814/LM.7.1.205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LINGUISTICS","Score":null,"Total":0}
引用次数: 3

摘要

自动文本摘要的目标是降低保存相关信息的文本的维数。在本文中,我们分析并应用了独立于语言的主成分分析技术来生成抽取的单文档多语言摘要。本文将通过语言相关的资源和工具来研究该技术在添加和不添加词汇语义知识的情况下的性能。实验使用了两种不同的语料库:三种语言(英语、德语和西班牙语)的新闻专线和维基百科文章,以验证该技术在几种情况下的使用。与现有的多语文系统相比,拟议的方法显示出非常有竞争力的结果,这表明,虽然在技术和要考虑的知识类型方面仍有改进的余地,但这在其他情况和其他语文方面具有很大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estudio de la influencia de incorporar conocimiento léxico-semántico a la técnica de Análisis de Componentes Principales para la generación de resúmenes multilingües
The objective of automatic text summarization  is to reduce the dimension of a text keeping the relevant information. In this paper we analyse and apply the language-independent Principal Component Analysis technique for generating extractive single-document multilingual summaries. This technique will be studied to evaluate its performance with and without adding lexical-semantic knowledge through language-dependent resources and tools. Experiments were conducted using two different corpora: newswire and Wikipedia articles in three languages (English, German and Spanish) to validate the use of this technique in several scenarios. The proposed approaches show very competitive results compared to multilingual available systems, indicating that, although there is still room for improvement with respect to the technique and the type of knowledge to be taken into consideration, this has great potential for being applied in other contexts and for other languages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Linguamatica
Linguamatica LINGUISTICS-
CiteScore
1.40
自引率
0.00%
发文量
4
审稿时长
6 weeks
期刊最新文献
A compilação e a análise de métricas textuais de um corpus de redações Classificação da qualidade da argumentação em tweets no domínio da política brasileira Extracção de Relações de Apoio e Oposição em Títulos de Notícias de Política em Português Pais, filhos e outras relações familiares no DIP DIP - Desafio de Identificação de Personagens: objectivo, organização, recursos e resultados
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1