ASSIN的Solo Queue:结合传统和新兴方法

IF 0.3 Q4 LINGUISTICS Linguamatica Pub Date : 2016-12-31 DOI:10.21814/LM.8.2.230
N. Hartmann
{"title":"ASSIN的Solo Queue:结合传统和新兴方法","authors":"N. Hartmann","doi":"10.21814/LM.8.2.230","DOIUrl":null,"url":null,"abstract":"In this paper we present a proposal to automatically label the similarity between a pair of sentences and the results obtained on ASSIN 2016 sentence similarity shared-task. Our proposal consists of using a classical feature of bag-of-words, the TF-IDF model; and an emergent feature, obtained from processing word embeddings. The TF-IDF is used to relate texts which share words. Word embeddings are known by capture the syntax and semantics of a word. Following Mikolov et al. (2013), the sum of embedding vectors can model the meaning of a sentence. Using both features, we are able to capture the words shared between sentences and their semantics. We use linear regression to solve this problem, once the dataset is labeled as real numbers between 1 and 5. Our results are promising. Although the usage of embeddings has not overcome our baseline system, when we combined it with TF-IDF, our system achieved better results than only using TF-IDF. Our results achieved the first collocation of ASSIN 2016 for sentence similarity shared-task applied on brazilian portuguese sentences and second collocation when applying to Portugal portuguese sentences.","PeriodicalId":41819,"journal":{"name":"Linguamatica","volume":"29 1","pages":"59-64"},"PeriodicalIF":0.3000,"publicationDate":"2016-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Solo Queue at ASSIN: Combinando Abordagens Tradicionais e Emergentes\",\"authors\":\"N. Hartmann\",\"doi\":\"10.21814/LM.8.2.230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a proposal to automatically label the similarity between a pair of sentences and the results obtained on ASSIN 2016 sentence similarity shared-task. Our proposal consists of using a classical feature of bag-of-words, the TF-IDF model; and an emergent feature, obtained from processing word embeddings. The TF-IDF is used to relate texts which share words. Word embeddings are known by capture the syntax and semantics of a word. Following Mikolov et al. (2013), the sum of embedding vectors can model the meaning of a sentence. Using both features, we are able to capture the words shared between sentences and their semantics. We use linear regression to solve this problem, once the dataset is labeled as real numbers between 1 and 5. Our results are promising. Although the usage of embeddings has not overcome our baseline system, when we combined it with TF-IDF, our system achieved better results than only using TF-IDF. Our results achieved the first collocation of ASSIN 2016 for sentence similarity shared-task applied on brazilian portuguese sentences and second collocation when applying to Portugal portuguese sentences.\",\"PeriodicalId\":41819,\"journal\":{\"name\":\"Linguamatica\",\"volume\":\"29 1\",\"pages\":\"59-64\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2016-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linguamatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21814/LM.8.2.230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LINGUISTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linguamatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21814/LM.8.2.230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LINGUISTICS","Score":null,"Total":0}
引用次数: 22

摘要

本文提出了一种基于ASSIN 2016句子相似度共享任务的句子相似度自动标注方法。我们的建议包括使用经典的词袋特征TF-IDF模型;和一个突现特征,从处理词嵌入得到。TF-IDF用于关联共享单词的文本。单词嵌入是通过捕获单词的语法和语义来实现的。继Mikolov et al.(2013)之后,嵌入向量的总和可以对句子的含义进行建模。使用这两个特征,我们能够捕获句子之间共享的单词及其语义。我们使用线性回归来解决这个问题,一旦数据集被标记为1到5之间的实数。我们的结果很有希望。虽然嵌入的使用并没有克服我们的基线系统,但当我们将其与TF-IDF结合使用时,我们的系统取得了比仅使用TF-IDF更好的结果。我们的结果实现了ASSIN 2016对巴西葡萄牙语句子相似度共享任务的第一次搭配和对葡萄牙葡萄牙语句子的第二次搭配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solo Queue at ASSIN: Combinando Abordagens Tradicionais e Emergentes
In this paper we present a proposal to automatically label the similarity between a pair of sentences and the results obtained on ASSIN 2016 sentence similarity shared-task. Our proposal consists of using a classical feature of bag-of-words, the TF-IDF model; and an emergent feature, obtained from processing word embeddings. The TF-IDF is used to relate texts which share words. Word embeddings are known by capture the syntax and semantics of a word. Following Mikolov et al. (2013), the sum of embedding vectors can model the meaning of a sentence. Using both features, we are able to capture the words shared between sentences and their semantics. We use linear regression to solve this problem, once the dataset is labeled as real numbers between 1 and 5. Our results are promising. Although the usage of embeddings has not overcome our baseline system, when we combined it with TF-IDF, our system achieved better results than only using TF-IDF. Our results achieved the first collocation of ASSIN 2016 for sentence similarity shared-task applied on brazilian portuguese sentences and second collocation when applying to Portugal portuguese sentences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Linguamatica
Linguamatica LINGUISTICS-
CiteScore
1.40
自引率
0.00%
发文量
4
审稿时长
6 weeks
期刊最新文献
A compilação e a análise de métricas textuais de um corpus de redações Classificação da qualidade da argumentação em tweets no domínio da política brasileira Extracção de Relações de Apoio e Oposição em Títulos de Notícias de Política em Português Pais, filhos e outras relações familiares no DIP DIP - Desafio de Identificação de Personagens: objectivo, organização, recursos e resultados
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1