基于抽象特征和生成模型的图像恢复体系结构

A. Fakhari, K. Kiani
{"title":"基于抽象特征和生成模型的图像恢复体系结构","authors":"A. Fakhari, K. Kiani","doi":"10.22044/JADM.2020.9691.2101","DOIUrl":null,"url":null,"abstract":"Image restoration and its different variations are important topics in low-level image processing. One of the main challenges in image restoration is dependency of current methods to the corruption characteristics. In this paper, we have proposed an image restoration architecture that enables us to address different types of corruption, regardless of type, amount and location. The main intuition behind our approach is restoring original images from abstracted perceptual features. Using an encoder-decoder architecture, image restoration can be defined as an image transformation task. Abstraction of perceptual features is done in the encoder part of the model and determines the sampling point within original images' Probability Density Function (PDF). The PDF of original images is learned in the decoder section by using a Generative Adversarial Network (GAN) that receives the sampling point from the encoder part. Concretely, sampling from the learned PDF restores original image from its corrupted version. Pretrained network extracts perceptual features and Restricted Boltzmann Machine (RBM) makes the abstraction over them in the encoder section. By developing a new algorithm for training the RBM, the features of the corrupted images have been refined. In the decoder, the Generator network restores original images from abstracted perceptual features while Discriminator determines how good the restoration result is. The proposed approach has been compared with both traditional approaches like BM3D and with modern deep models like IRCNN and NCSR. We have also considered three different categories of corruption including denoising, inpainting and deblurring. Experimental results confirm performance of the model.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Image Restoration Architecture using Abstract Features and Generative Models\",\"authors\":\"A. Fakhari, K. Kiani\",\"doi\":\"10.22044/JADM.2020.9691.2101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image restoration and its different variations are important topics in low-level image processing. One of the main challenges in image restoration is dependency of current methods to the corruption characteristics. In this paper, we have proposed an image restoration architecture that enables us to address different types of corruption, regardless of type, amount and location. The main intuition behind our approach is restoring original images from abstracted perceptual features. Using an encoder-decoder architecture, image restoration can be defined as an image transformation task. Abstraction of perceptual features is done in the encoder part of the model and determines the sampling point within original images' Probability Density Function (PDF). The PDF of original images is learned in the decoder section by using a Generative Adversarial Network (GAN) that receives the sampling point from the encoder part. Concretely, sampling from the learned PDF restores original image from its corrupted version. Pretrained network extracts perceptual features and Restricted Boltzmann Machine (RBM) makes the abstraction over them in the encoder section. By developing a new algorithm for training the RBM, the features of the corrupted images have been refined. In the decoder, the Generator network restores original images from abstracted perceptual features while Discriminator determines how good the restoration result is. The proposed approach has been compared with both traditional approaches like BM3D and with modern deep models like IRCNN and NCSR. We have also considered three different categories of corruption including denoising, inpainting and deblurring. Experimental results confirm performance of the model.\",\"PeriodicalId\":32592,\"journal\":{\"name\":\"Journal of Artificial Intelligence and Data Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22044/JADM.2020.9691.2101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JADM.2020.9691.2101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

图像恢复及其变化是底层图像处理中的一个重要课题。图像恢复面临的主要挑战之一是现有方法对图像腐败特征的依赖性。在本文中,我们提出了一个图像恢复架构,使我们能够解决不同类型的腐败,无论类型,数量和位置。我们的方法背后的主要直觉是从抽象的感知特征中恢复原始图像。使用编码器-解码器架构,图像恢复可以定义为图像转换任务。感知特征的抽象在模型的编码器部分完成,并在原始图像的概率密度函数(PDF)内确定采样点。在解码器部分使用生成式对抗网络(GAN)学习原始图像的PDF, GAN接收来自编码器部分的采样点。具体来说,从学习到的PDF中进行采样,从其损坏的版本中恢复原始图像。预训练网络提取感知特征,并在编码器部分使用受限玻尔兹曼机对其进行抽象。通过开发一种新的RBM训练算法,改进了损坏图像的特征。在解码器中,生成器网络从抽象的感知特征中恢复原始图像,而鉴别器决定恢复结果的好坏。该方法已与传统方法如BM3D和现代深度模型如IRCNN和NCSR进行了比较。我们还考虑了三种不同类型的腐败,包括去噪、上漆和去模糊。实验结果证实了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Image Restoration Architecture using Abstract Features and Generative Models
Image restoration and its different variations are important topics in low-level image processing. One of the main challenges in image restoration is dependency of current methods to the corruption characteristics. In this paper, we have proposed an image restoration architecture that enables us to address different types of corruption, regardless of type, amount and location. The main intuition behind our approach is restoring original images from abstracted perceptual features. Using an encoder-decoder architecture, image restoration can be defined as an image transformation task. Abstraction of perceptual features is done in the encoder part of the model and determines the sampling point within original images' Probability Density Function (PDF). The PDF of original images is learned in the decoder section by using a Generative Adversarial Network (GAN) that receives the sampling point from the encoder part. Concretely, sampling from the learned PDF restores original image from its corrupted version. Pretrained network extracts perceptual features and Restricted Boltzmann Machine (RBM) makes the abstraction over them in the encoder section. By developing a new algorithm for training the RBM, the features of the corrupted images have been refined. In the decoder, the Generator network restores original images from abstracted perceptual features while Discriminator determines how good the restoration result is. The proposed approach has been compared with both traditional approaches like BM3D and with modern deep models like IRCNN and NCSR. We have also considered three different categories of corruption including denoising, inpainting and deblurring. Experimental results confirm performance of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Nasal Breath Input: Exploring Nasal Breath Input Method for Hands-Free Input by Using a Glasses Type Device with Piezoelectric Elements Sentiment Mining and Analysis over Text Corpora via Complex Deep Learning Naural Architectures An Intelligent Model for Prediction of In-Vitro Fertilization Success using MLP Neural Network and GA Optimization Robust Vein Recognition against Rotation Using Kernel Sparse Representation Improving Speed and Efficiency of Dynamic Programming Methods through Chaos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1