利用功能化氧化铝颗粒改善复合膜的抗空化性能

IF 0.8 4区 工程技术 Q4 ENGINEERING, CHEMICAL Hemijska Industrija Pub Date : 2018-01-01 DOI:10.2298/hemind180308011a
A. Algellai, M. Vuksanović, Z. Tomić, A. Marinković, M. Dojčinović, T. Volkov-Husović, R. Jančić-Heinemann
{"title":"利用功能化氧化铝颗粒改善复合膜的抗空化性能","authors":"A. Algellai, M. Vuksanović, Z. Tomić, A. Marinković, M. Dojčinović, T. Volkov-Husović, R. Jančić-Heinemann","doi":"10.2298/hemind180308011a","DOIUrl":null,"url":null,"abstract":"Composite films having the UV cured Bis-GMA (Bisphenol A glycidylmethacrylate)/TEGDMA (triethylene glycol dimethacrylate) as a matrix and the ferrous oxide doped alumina (Al2O3 Fe) based particles were prepared and subjected to cavitation. In order to improve the mechanical and adhesion properties of composites, four different surface modifications of filler particles were performed: 3-methacryloxypropyltrimethoxysilane (MEMO), vinyltris(2-methoxyethoxy)silane (VTMOEO), (3-aminopropyl)trimethoxysilane (APTMS) and biodiesel (BD). Composite films were made with 0.5, 1.5, and 3 wt.% of ferrous oxide doped alumina particles with each of the mentioned surface modifications. Composite films were prepared on brass substrates and exposed to cavitation erosion. The erosion was monitored using the mass loss while image analysis was used to observe surface defects. The composite film reinforced with Al2O3 Fe having VTMOEO as a surface modifier was the most resistant one in terms of mass loss, as well as the level of surface destruction. Results were compared to the same polymer matrix film and composite films prepared with fillers without surface modifications revealing that all composites with surface modified fillers exhibited some improvement in resistance to cavitation.","PeriodicalId":12913,"journal":{"name":"Hemijska Industrija","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Improvement of cavitation resistance of composite films using functionalized alumina particles\",\"authors\":\"A. Algellai, M. Vuksanović, Z. Tomić, A. Marinković, M. Dojčinović, T. Volkov-Husović, R. Jančić-Heinemann\",\"doi\":\"10.2298/hemind180308011a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Composite films having the UV cured Bis-GMA (Bisphenol A glycidylmethacrylate)/TEGDMA (triethylene glycol dimethacrylate) as a matrix and the ferrous oxide doped alumina (Al2O3 Fe) based particles were prepared and subjected to cavitation. In order to improve the mechanical and adhesion properties of composites, four different surface modifications of filler particles were performed: 3-methacryloxypropyltrimethoxysilane (MEMO), vinyltris(2-methoxyethoxy)silane (VTMOEO), (3-aminopropyl)trimethoxysilane (APTMS) and biodiesel (BD). Composite films were made with 0.5, 1.5, and 3 wt.% of ferrous oxide doped alumina particles with each of the mentioned surface modifications. Composite films were prepared on brass substrates and exposed to cavitation erosion. The erosion was monitored using the mass loss while image analysis was used to observe surface defects. The composite film reinforced with Al2O3 Fe having VTMOEO as a surface modifier was the most resistant one in terms of mass loss, as well as the level of surface destruction. Results were compared to the same polymer matrix film and composite films prepared with fillers without surface modifications revealing that all composites with surface modified fillers exhibited some improvement in resistance to cavitation.\",\"PeriodicalId\":12913,\"journal\":{\"name\":\"Hemijska Industrija\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hemijska Industrija\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2298/hemind180308011a\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hemijska Industrija","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/hemind180308011a","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 8

摘要

以UV固化的双- gma(双酚A -甲基丙烯酸酯)/TEGDMA(三乙二醇二甲基丙烯酸酯)为基体,以氧化亚铁掺杂氧化铝(Al2O3 Fe)为基颗粒,制备了复合薄膜并进行了空化处理。为了提高复合材料的力学性能和粘附性能,对填充颗粒进行了4种不同的表面改性:3-甲基丙烯氧基丙基三甲氧基硅烷(MEMO)、乙烯基三(2-甲氧基乙氧基)硅烷(VTMOEO)、(3-氨基丙基)三甲氧基硅烷(APTMS)和生物柴油(BD)。复合薄膜分别由0.5、1.5和3wt %的氧化亚铁掺杂氧化铝颗粒和上述每一种表面改性制成。在黄铜基底上制备复合薄膜,并进行空化腐蚀。利用质量损失监测腐蚀过程,利用图像分析观察表面缺陷。以VTMOEO为表面改性剂的Al2O3 Fe增强复合膜在质量损失和表面破坏程度方面是最耐的。结果表明,采用表面改性填料制备的复合材料在抗空化性能上均有一定的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improvement of cavitation resistance of composite films using functionalized alumina particles
Composite films having the UV cured Bis-GMA (Bisphenol A glycidylmethacrylate)/TEGDMA (triethylene glycol dimethacrylate) as a matrix and the ferrous oxide doped alumina (Al2O3 Fe) based particles were prepared and subjected to cavitation. In order to improve the mechanical and adhesion properties of composites, four different surface modifications of filler particles were performed: 3-methacryloxypropyltrimethoxysilane (MEMO), vinyltris(2-methoxyethoxy)silane (VTMOEO), (3-aminopropyl)trimethoxysilane (APTMS) and biodiesel (BD). Composite films were made with 0.5, 1.5, and 3 wt.% of ferrous oxide doped alumina particles with each of the mentioned surface modifications. Composite films were prepared on brass substrates and exposed to cavitation erosion. The erosion was monitored using the mass loss while image analysis was used to observe surface defects. The composite film reinforced with Al2O3 Fe having VTMOEO as a surface modifier was the most resistant one in terms of mass loss, as well as the level of surface destruction. Results were compared to the same polymer matrix film and composite films prepared with fillers without surface modifications revealing that all composites with surface modified fillers exhibited some improvement in resistance to cavitation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hemijska Industrija
Hemijska Industrija 工程技术-工程:化工
CiteScore
1.60
自引率
11.10%
发文量
12
审稿时长
6-12 weeks
期刊介绍: The Journal Hemijska industrija (abbreviation Hem. Ind.) is publishing papers in the field of Chemical Engineering (Transport phenomena; Process Modeling, Simulation and Optimization; Thermodynamics; Separation Processes; Reactor Engineering; Electrochemical Engineering; Petrochemical Engineering), Biochemical Engineering (Bioreactors; Protein Engineering; Kinetics of Bioprocesses), Engineering of Materials (Polymers; Metal materials; Non-metal materials; Biomaterials), Environmental Engineeringand Applied Chemistry. The journal is published bimonthly by the Association of Chemical Engineers of Serbia (a member of EFCE - European Federation of Chemical Engineering). In addition to professional articles of importance to industry, scientific research papers are published, not only from our country but from all over the world. It also contains topics such as business news, science and technology news, information on new apparatus and equipment, and articles on environmental protection.
期刊最新文献
Transport properties and permeability of textile materials Water vapour permeability of nylon pantyhose Looking backward to move forward in perioperative pain management? Controllable arrangement of integrated obstacles in silicon microchannels etched in 25 wt.% TMAX Microstructure as an essential aspect of EN AW 7075 aluminum alloy quality influenced by electromagnetic field during continuous casting process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1