改性纳米矿物吸附剂对工业废水脱色效果的影响研究

IF 1.1 Q3 MINING & MINERAL PROCESSING Journal of Mining and Environment Pub Date : 2021-01-01 DOI:10.22044/JME.2020.10122.1950
Azadeh Agah, Nasrin Falahati
{"title":"改性纳米矿物吸附剂对工业废水脱色效果的影响研究","authors":"Azadeh Agah, Nasrin Falahati","doi":"10.22044/JME.2020.10122.1950","DOIUrl":null,"url":null,"abstract":"In this research work, the potential capability of nano-clay and tonsil, as low-cost and domestic adsorbents, for the elimination of a cationic dye, (CR18) from contaminated water is investigated. The surface properties of the adsorbents are studied by means of the scanning electron microscopy (SEM) and X-ray diffraction techniques. The effects of the initial dye concentration, pH, stirring speed, contact time, and adsorbent dosage are investigated at 25 . The results obtained show that the dye adsorption data from the nano-clay and tonsil experiments fit well to the Langmuir and Freundlich isotherms, respectively. The results of dye adsorption kinetics demonstrate that the adsorption system follows a pseudo-second-order model with a satisfactory correlation value (R=99%).The adsorption thermodynamics is also studied, concluding that the adsorption process is spontaneous and physically controlled. Under the optimum conditions (pH of 7, stirring speed of 200 rpm, CR18 concentration of 30 ppm and contact time of 30 min), the adsorption capacities of the mixed adsorbents show the maximum adsorption efficiency at the tonsil:nano-clay weight ratio of 1:2.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":"12 1","pages":"219-233"},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Studying Effect of Modifying Nano-Mineral Adsorbents on Efficiency of Dye Removal from Industrial Effluents\",\"authors\":\"Azadeh Agah, Nasrin Falahati\",\"doi\":\"10.22044/JME.2020.10122.1950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research work, the potential capability of nano-clay and tonsil, as low-cost and domestic adsorbents, for the elimination of a cationic dye, (CR18) from contaminated water is investigated. The surface properties of the adsorbents are studied by means of the scanning electron microscopy (SEM) and X-ray diffraction techniques. The effects of the initial dye concentration, pH, stirring speed, contact time, and adsorbent dosage are investigated at 25 . The results obtained show that the dye adsorption data from the nano-clay and tonsil experiments fit well to the Langmuir and Freundlich isotherms, respectively. The results of dye adsorption kinetics demonstrate that the adsorption system follows a pseudo-second-order model with a satisfactory correlation value (R=99%).The adsorption thermodynamics is also studied, concluding that the adsorption process is spontaneous and physically controlled. Under the optimum conditions (pH of 7, stirring speed of 200 rpm, CR18 concentration of 30 ppm and contact time of 30 min), the adsorption capacities of the mixed adsorbents show the maximum adsorption efficiency at the tonsil:nano-clay weight ratio of 1:2.\",\"PeriodicalId\":45259,\"journal\":{\"name\":\"Journal of Mining and Environment\",\"volume\":\"12 1\",\"pages\":\"219-233\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mining and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22044/JME.2020.10122.1950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JME.2020.10122.1950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 1

摘要

在本研究中,研究了纳米粘土和扁桃体作为低成本和家用吸附剂去除污染水中阳离子染料(CR18)的潜力。利用扫描电子显微镜(SEM)和x射线衍射技术研究了吸附剂的表面性质。考察了初始染料浓度、pH值、搅拌速度、接触时间、吸附剂用量等因素的影响。结果表明,纳米粘土和扁桃体实验的染料吸附数据分别符合Langmuir和Freundlich等温线。染料吸附动力学结果表明,吸附系统符合准二阶模型,相关系数为99%。对吸附热力学进行了研究,认为吸附过程是自发的、受物理控制的。在最佳条件下(pH = 7,搅拌速度为200 rpm, CR18浓度为30 ppm,接触时间为30 min),混合吸附剂的吸附量在扁桃体与纳米粘土的质量比为1:2时表现出最大的吸附效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Studying Effect of Modifying Nano-Mineral Adsorbents on Efficiency of Dye Removal from Industrial Effluents
In this research work, the potential capability of nano-clay and tonsil, as low-cost and domestic adsorbents, for the elimination of a cationic dye, (CR18) from contaminated water is investigated. The surface properties of the adsorbents are studied by means of the scanning electron microscopy (SEM) and X-ray diffraction techniques. The effects of the initial dye concentration, pH, stirring speed, contact time, and adsorbent dosage are investigated at 25 . The results obtained show that the dye adsorption data from the nano-clay and tonsil experiments fit well to the Langmuir and Freundlich isotherms, respectively. The results of dye adsorption kinetics demonstrate that the adsorption system follows a pseudo-second-order model with a satisfactory correlation value (R=99%).The adsorption thermodynamics is also studied, concluding that the adsorption process is spontaneous and physically controlled. Under the optimum conditions (pH of 7, stirring speed of 200 rpm, CR18 concentration of 30 ppm and contact time of 30 min), the adsorption capacities of the mixed adsorbents show the maximum adsorption efficiency at the tonsil:nano-clay weight ratio of 1:2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mining and Environment
Journal of Mining and Environment MINING & MINERAL PROCESSING-
CiteScore
1.90
自引率
25.00%
发文量
0
期刊最新文献
Fe3O4@TiO2@V2O5 as an efficient magnetic nanoparticle for synthesis of di-indolyl oxindole derivatives Propose a viable stabilization method for slope in weak rock mass environment using numerical modelling: A case study from the cut slopes Estimation of optimum geometric configuration of mine dumps in Wardha valley coalfields in India: a case study An investigation on tailing slurry transport in Kooshk lead-zinc mine in Iran based on non-Newtonian fluid rheology: an experimental study Carnallite Flotation of Khur Biabanak Potash Complex using kimiaflot 619 as a New Collector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1