Hyangtae Choi, Yonghee Lee, W. Park, B. Kim, C. Lee
{"title":"维甲酸在人表皮角质形成细胞中通过klotho介导的EGFR信号通路诱导透明质酸的产生","authors":"Hyangtae Choi, Yonghee Lee, W. Park, B. Kim, C. Lee","doi":"10.2298/abs220215007c","DOIUrl":null,"url":null,"abstract":"All-trans retinoic acid (RA) is an effective anti-aging chemical substance widely used in skin-care products. RA compromises epidermal differentiation and induces keratinocyte proliferation, causing hyaluronic acid production through mechanisms that are not completely understood. Klotho protein causes the differentiation of human epidermal keratinocytes. Klotho gene expression is mediated by epidermal growth factor (EGF), which inhibits cell apoptosis in aging-related diseases. The klotho gene causes human aging syndrome, including short lifespan, skin atrophy, and osteoporosis. We investigated the relationship between RA and klotho in epidermal keratinocytes for the first time. In human epidermal keratinocytes, RA induced klotho gene expression. Treatment with both RA and recombinant klotho induced hyaluronic acid production in human epidermal keratinocytes. However, in klotho small interfering RNA (siRNA)-transfected keratinocytes, RA produced less hyaluronic acid than in the control group, indicating that RA may partially regulate hyaluronic acid production through a klotho-dependent pathway. Knockdown of klotho gene expression inactivated the EGFR-extracellular signal-regulated kinase (ERK) signaling pathway, which is involved in hyaluronic acid production. We concluded that the effect of RA on hyaluronic acid production is partly regulated through the klothomediated EGFR signaling pathway in human epidermal keratinocytes.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Retinoic acid induces hyaluronic acid production through the klotho-mediated EGFR signaling pathway in human epidermal keratinocytes\",\"authors\":\"Hyangtae Choi, Yonghee Lee, W. Park, B. Kim, C. Lee\",\"doi\":\"10.2298/abs220215007c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All-trans retinoic acid (RA) is an effective anti-aging chemical substance widely used in skin-care products. RA compromises epidermal differentiation and induces keratinocyte proliferation, causing hyaluronic acid production through mechanisms that are not completely understood. Klotho protein causes the differentiation of human epidermal keratinocytes. Klotho gene expression is mediated by epidermal growth factor (EGF), which inhibits cell apoptosis in aging-related diseases. The klotho gene causes human aging syndrome, including short lifespan, skin atrophy, and osteoporosis. We investigated the relationship between RA and klotho in epidermal keratinocytes for the first time. In human epidermal keratinocytes, RA induced klotho gene expression. Treatment with both RA and recombinant klotho induced hyaluronic acid production in human epidermal keratinocytes. However, in klotho small interfering RNA (siRNA)-transfected keratinocytes, RA produced less hyaluronic acid than in the control group, indicating that RA may partially regulate hyaluronic acid production through a klotho-dependent pathway. Knockdown of klotho gene expression inactivated the EGFR-extracellular signal-regulated kinase (ERK) signaling pathway, which is involved in hyaluronic acid production. We concluded that the effect of RA on hyaluronic acid production is partly regulated through the klothomediated EGFR signaling pathway in human epidermal keratinocytes.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2298/abs220215007c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2298/abs220215007c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Retinoic acid induces hyaluronic acid production through the klotho-mediated EGFR signaling pathway in human epidermal keratinocytes
All-trans retinoic acid (RA) is an effective anti-aging chemical substance widely used in skin-care products. RA compromises epidermal differentiation and induces keratinocyte proliferation, causing hyaluronic acid production through mechanisms that are not completely understood. Klotho protein causes the differentiation of human epidermal keratinocytes. Klotho gene expression is mediated by epidermal growth factor (EGF), which inhibits cell apoptosis in aging-related diseases. The klotho gene causes human aging syndrome, including short lifespan, skin atrophy, and osteoporosis. We investigated the relationship between RA and klotho in epidermal keratinocytes for the first time. In human epidermal keratinocytes, RA induced klotho gene expression. Treatment with both RA and recombinant klotho induced hyaluronic acid production in human epidermal keratinocytes. However, in klotho small interfering RNA (siRNA)-transfected keratinocytes, RA produced less hyaluronic acid than in the control group, indicating that RA may partially regulate hyaluronic acid production through a klotho-dependent pathway. Knockdown of klotho gene expression inactivated the EGFR-extracellular signal-regulated kinase (ERK) signaling pathway, which is involved in hyaluronic acid production. We concluded that the effect of RA on hyaluronic acid production is partly regulated through the klothomediated EGFR signaling pathway in human epidermal keratinocytes.