生命条码的非度量距离

Q3 Biochemistry, Genetics and Molecular Biology IPSJ Transactions on Bioinformatics Pub Date : 2008-01-01 DOI:10.2197/IPSJTBIO.1.35
H. Akiba, Y-h. Taguchi
{"title":"生命条码的非度量距离","authors":"H. Akiba, Y-h. Taguchi","doi":"10.2197/IPSJTBIO.1.35","DOIUrl":null,"url":null,"abstract":"Barcode of Life (BOL) project[4] is the project to enable us to recognize species easier. Although it is often troublesome to define what the species are, BOL can define species by simple DNA sequences. When it works, we do not have to consult with any other information than DNA sequences to decide if two individuals belong to the same species or not. If they share same BOL with each other, they belong to the same species undoubtedly. In contrast to this, it is usually difficult to define what the higher clade are. We cannot expect that each individual which belong to the same upper Claude share the same BOL. Instead, we have to find how BOL of individuals which belong to distinct higher clade differ from each other. In this poster, we demonstrate how nonmetric measure of distances between BOL make easier to recognize if each belongs to common higher clade or not. We also show that usual hierarchical clustering like NJ method is not suitable to visualize relationships expressed by nonmetric measure and propose to usage of nonmetric multidimensional scaling (nMDS)[1, 2].","PeriodicalId":38959,"journal":{"name":"IPSJ Transactions on Bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2197/IPSJTBIO.1.35","citationCount":"0","resultStr":"{\"title\":\"Nonmetric Distances for Barcode of Life\",\"authors\":\"H. Akiba, Y-h. Taguchi\",\"doi\":\"10.2197/IPSJTBIO.1.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Barcode of Life (BOL) project[4] is the project to enable us to recognize species easier. Although it is often troublesome to define what the species are, BOL can define species by simple DNA sequences. When it works, we do not have to consult with any other information than DNA sequences to decide if two individuals belong to the same species or not. If they share same BOL with each other, they belong to the same species undoubtedly. In contrast to this, it is usually difficult to define what the higher clade are. We cannot expect that each individual which belong to the same upper Claude share the same BOL. Instead, we have to find how BOL of individuals which belong to distinct higher clade differ from each other. In this poster, we demonstrate how nonmetric measure of distances between BOL make easier to recognize if each belongs to common higher clade or not. We also show that usual hierarchical clustering like NJ method is not suitable to visualize relationships expressed by nonmetric measure and propose to usage of nonmetric multidimensional scaling (nMDS)[1, 2].\",\"PeriodicalId\":38959,\"journal\":{\"name\":\"IPSJ Transactions on Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2197/IPSJTBIO.1.35\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPSJ Transactions on Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/IPSJTBIO.1.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/IPSJTBIO.1.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

生命条形码(BOL)项目[4]是一个让我们更容易识别物种的项目。虽然定义物种是什么通常很麻烦,但BOL可以通过简单的DNA序列来定义物种。当它起作用时,我们不需要参考DNA序列以外的任何其他信息来决定两个个体是否属于同一物种。如果它们彼此具有相同的BOL,则它们无疑属于同一物种。与此相反,通常很难定义什么是高级进化支。我们不能期望属于同一上Claude的每个个体都具有相同的BOL。相反,我们必须找出属于不同高级分支的个体的BOL是如何彼此不同的。在这张海报中,我们展示了BOL之间的非度量距离如何更容易识别每个BOL是否属于共同的高级分支。我们还证明了通常的分层聚类方法(如NJ方法)不适合将非度量度量表示的关系可视化,并提出了使用非度量多维尺度(nMDS)[1,2]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonmetric Distances for Barcode of Life
Barcode of Life (BOL) project[4] is the project to enable us to recognize species easier. Although it is often troublesome to define what the species are, BOL can define species by simple DNA sequences. When it works, we do not have to consult with any other information than DNA sequences to decide if two individuals belong to the same species or not. If they share same BOL with each other, they belong to the same species undoubtedly. In contrast to this, it is usually difficult to define what the higher clade are. We cannot expect that each individual which belong to the same upper Claude share the same BOL. Instead, we have to find how BOL of individuals which belong to distinct higher clade differ from each other. In this poster, we demonstrate how nonmetric measure of distances between BOL make easier to recognize if each belongs to common higher clade or not. We also show that usual hierarchical clustering like NJ method is not suitable to visualize relationships expressed by nonmetric measure and propose to usage of nonmetric multidimensional scaling (nMDS)[1, 2].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IPSJ Transactions on Bioinformatics
IPSJ Transactions on Bioinformatics Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
1.90
自引率
0.00%
发文量
3
期刊最新文献
A High-speed Measurement System for Treadmill Spherical Motion in Virtual Reality for Mice and a Robust Rotation Axis Estimation Algorithm Based on Spherical Geometry Metabolic Network Analysis by Time-series Causal Inference Using the Multi-dimensional Space of Prediction Errors AtLASS: A Scheme for End-to-End Prediction of Splice Sites Using Attention-based Bi-LSTM Erratum: A High-speed Measurement System for Treadmill Spherical Motion in Virtual Reality for Mice and a Robust Rotation Axis Estimation Algorithm Based on Spherical Geometry [IPSJ Transactions on Bioinformatics Vol.16 pp.1-12] A Novel Metagenomic Binning Framework Using NLP Techniques in Feature Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1