火花等离子烧结及热处理制备的相纯体Ta4AlC3的力学性能

IF 0.9 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Processing and Application of Ceramics Pub Date : 2021-01-01 DOI:10.2298/pac2103211y
G. Ying, Cong Hu, Lu Liu, Cheng Sun, Dong Wen, Jianfeng Zhang, Yongting Zheng, Minghui Wang, Chen Zhang, Xiang Wang, Cheng Wang
{"title":"火花等离子烧结及热处理制备的相纯体Ta4AlC3的力学性能","authors":"G. Ying, Cong Hu, Lu Liu, Cheng Sun, Dong Wen, Jianfeng Zhang, Yongting Zheng, Minghui Wang, Chen Zhang, Xiang Wang, Cheng Wang","doi":"10.2298/pac2103211y","DOIUrl":null,"url":null,"abstract":"High-purity and bulk Ta4AlC3 ceramics were successfully fabricated by spark plasma sintering (SPS) and subsequent heat treatment, using the raw materials including TaC and Ta2AlC powders. These raw materials were first synthesized by self-propagation high temperature synthesis from elements tantalum, aluminium and carbon black powders, followed by pressure-less sintering. The as-fabricated bulk Ta4AlC3 was relatively stable when subjected to heat treatment at elevated temperature of 1500?C. Moreover, prolonging the heat treatment time resulted in bigger grain sizes and higher densities of the Ta4AlC3. The flexural strength and the fracture toughness of the Ta4AlC3 fabricated by SPS were found to be 411MPa and 7.11MPa?m1/2, respectively. After the heat treatment at 1500?C for 8 h, the flexural strength and the fracture toughness of the Ta4AlC3 could reach 709MPa and 9.23MPa?m1/2, respectively. The special structural characteristics of the ternary ceramics and the increase of density after the heat treatment are the main reasons for the variation in mechanical properties of ternary ceramics.","PeriodicalId":20596,"journal":{"name":"Processing and Application of Ceramics","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Mechanical properties of phase-pure bulk Ta4AlC3 prepared by spark plasma sintering and subsequent heat treatment\",\"authors\":\"G. Ying, Cong Hu, Lu Liu, Cheng Sun, Dong Wen, Jianfeng Zhang, Yongting Zheng, Minghui Wang, Chen Zhang, Xiang Wang, Cheng Wang\",\"doi\":\"10.2298/pac2103211y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-purity and bulk Ta4AlC3 ceramics were successfully fabricated by spark plasma sintering (SPS) and subsequent heat treatment, using the raw materials including TaC and Ta2AlC powders. These raw materials were first synthesized by self-propagation high temperature synthesis from elements tantalum, aluminium and carbon black powders, followed by pressure-less sintering. The as-fabricated bulk Ta4AlC3 was relatively stable when subjected to heat treatment at elevated temperature of 1500?C. Moreover, prolonging the heat treatment time resulted in bigger grain sizes and higher densities of the Ta4AlC3. The flexural strength and the fracture toughness of the Ta4AlC3 fabricated by SPS were found to be 411MPa and 7.11MPa?m1/2, respectively. After the heat treatment at 1500?C for 8 h, the flexural strength and the fracture toughness of the Ta4AlC3 could reach 709MPa and 9.23MPa?m1/2, respectively. The special structural characteristics of the ternary ceramics and the increase of density after the heat treatment are the main reasons for the variation in mechanical properties of ternary ceramics.\",\"PeriodicalId\":20596,\"journal\":{\"name\":\"Processing and Application of Ceramics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Processing and Application of Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/pac2103211y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Processing and Application of Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/pac2103211y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 5

摘要

以TaC和Ta2AlC粉末为原料,通过火花等离子烧结(SPS)和后续热处理,成功制备了高纯度、高体积的Ta4AlC3陶瓷。首先以钽、铝和炭黑粉末为原料,通过自扩散高温合成,然后进行无压烧结。经1500℃高温热处理后,制备的体块Ta4AlC3相对稳定。随着热处理时间的延长,Ta4AlC3的晶粒尺寸增大,密度增大。SPS制备的Ta4AlC3的抗弯强度和断裂韧性分别为411MPa和7.11MPa?分别m1/2。在1500度热处理后?在高温下保温8 h, Ta4AlC3的抗弯强度和断裂韧性可分别达到709MPa和9.23MPa?分别m1/2。三元陶瓷的特殊结构特点和热处理后密度的增大是导致三元陶瓷力学性能变化的主要原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanical properties of phase-pure bulk Ta4AlC3 prepared by spark plasma sintering and subsequent heat treatment
High-purity and bulk Ta4AlC3 ceramics were successfully fabricated by spark plasma sintering (SPS) and subsequent heat treatment, using the raw materials including TaC and Ta2AlC powders. These raw materials were first synthesized by self-propagation high temperature synthesis from elements tantalum, aluminium and carbon black powders, followed by pressure-less sintering. The as-fabricated bulk Ta4AlC3 was relatively stable when subjected to heat treatment at elevated temperature of 1500?C. Moreover, prolonging the heat treatment time resulted in bigger grain sizes and higher densities of the Ta4AlC3. The flexural strength and the fracture toughness of the Ta4AlC3 fabricated by SPS were found to be 411MPa and 7.11MPa?m1/2, respectively. After the heat treatment at 1500?C for 8 h, the flexural strength and the fracture toughness of the Ta4AlC3 could reach 709MPa and 9.23MPa?m1/2, respectively. The special structural characteristics of the ternary ceramics and the increase of density after the heat treatment are the main reasons for the variation in mechanical properties of ternary ceramics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Processing and Application of Ceramics
Processing and Application of Ceramics MATERIALS SCIENCE, CERAMICS-
CiteScore
1.90
自引率
9.10%
发文量
14
审稿时长
10 weeks
期刊介绍: Information not localized
期刊最新文献
Viscosity optimisation of photosensitive al2o3 slurry for stereolithography based additive manufacturing Comments on the paper “Structure, electric and dielectric properties of PbFe1/3Ti1/3W1/3O3 single perovskite compound” by P.G.R. Achary, R.N.P. Choudhary, S.K. Parida, published in Processing and Application of Ceramics 14 (2020) 146-153 Theoretical prediction by DFT on properties of β′-SrTa2O6 crystal Production of tib2 coatings on graphite substrates by electrophoretic deposition in NaF-AlF3 melt Use of cobalt ferrite and activated carbon in supercapacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1