增强Ba0.9Sr0.1TiO3-Bi(Mg1/2Ti1/2)O3陶瓷的低电场储能性能

IF 0.9 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Processing and Application of Ceramics Pub Date : 2021-01-01 DOI:10.2298/pac2104410w
Shihao Wang, B. Fang, Shuai Zhang, Xiaolong Lu, Jianning Ding
{"title":"增强Ba0.9Sr0.1TiO3-Bi(Mg1/2Ti1/2)O3陶瓷的低电场储能性能","authors":"Shihao Wang, B. Fang, Shuai Zhang, Xiaolong Lu, Jianning Ding","doi":"10.2298/pac2104410w","DOIUrl":null,"url":null,"abstract":"Perovskite (1-x)Ba0.9Sr0.1TiO3-xBi(Mg1/2Ti1/2)O3 (BST-BiMT-x) ceramics were prepared by sintering the corresponding powders synthesized by combining of solid state reaction method with citrate sol-gel and selfcombustion techniques. Submicron grains morphology, high density and large resistivity were obtained in the BST-BiMT-x ceramics. In addition, the BST-BiMT-0.1 and BST-BiMT-0.075 ceramics exhibit ferroelectric hysteresis loops with slim shape which lead to enhanced energy-storage properties. The energy-storage density of these two ceramics increases almost linearly with increasing the applied electric filed. The energy-storage density and efficiency at 25 kV/cm of the BST-BiMT-0.1 and BST-BiMT-0.075 ceramics sintered at 1200?C are 141.2mJ/cm3 and 79.3%, and 158.1mJ/cm3 and 76.7%, respectively, surpassing many recently reported values for ferroelectric/antiferroelectric ceramics. The enhanced energy-storage density and efficiency under low electric field can be attributed to the slim polarization-electric field hysteresis loops, high density accompanied by submicron grains morphology and pure perovskite structure.","PeriodicalId":20596,"journal":{"name":"Processing and Application of Ceramics","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced low electric-field energy-storage performance in Ba0.9Sr0.1TiO3-Bi(Mg1/2Ti1/2)O3 ceramics\",\"authors\":\"Shihao Wang, B. Fang, Shuai Zhang, Xiaolong Lu, Jianning Ding\",\"doi\":\"10.2298/pac2104410w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perovskite (1-x)Ba0.9Sr0.1TiO3-xBi(Mg1/2Ti1/2)O3 (BST-BiMT-x) ceramics were prepared by sintering the corresponding powders synthesized by combining of solid state reaction method with citrate sol-gel and selfcombustion techniques. Submicron grains morphology, high density and large resistivity were obtained in the BST-BiMT-x ceramics. In addition, the BST-BiMT-0.1 and BST-BiMT-0.075 ceramics exhibit ferroelectric hysteresis loops with slim shape which lead to enhanced energy-storage properties. The energy-storage density of these two ceramics increases almost linearly with increasing the applied electric filed. The energy-storage density and efficiency at 25 kV/cm of the BST-BiMT-0.1 and BST-BiMT-0.075 ceramics sintered at 1200?C are 141.2mJ/cm3 and 79.3%, and 158.1mJ/cm3 and 76.7%, respectively, surpassing many recently reported values for ferroelectric/antiferroelectric ceramics. The enhanced energy-storage density and efficiency under low electric field can be attributed to the slim polarization-electric field hysteresis loops, high density accompanied by submicron grains morphology and pure perovskite structure.\",\"PeriodicalId\":20596,\"journal\":{\"name\":\"Processing and Application of Ceramics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Processing and Application of Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/pac2104410w\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Processing and Application of Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/pac2104410w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

将固相反应法与柠檬酸溶胶-凝胶法及自燃法相结合合成的钙钛矿(1-x)Ba0.9Sr0.1TiO3-xBi(Mg1/2Ti1/2)O3 (bst - bmt -x)粉体进行烧结制备了钙钛矿(1-x)Ba0.9Sr0.1TiO3-xBi(Mg1/2Ti1/2)O3陶瓷。bst - bmt -x陶瓷具有亚微米晶粒形貌、高密度和大电阻率等特点。此外,BST-BiMT-0.1和BST-BiMT-0.075陶瓷具有细长形状的铁电磁滞回线,从而增强了储能性能。这两种陶瓷的储能密度几乎随外加电场的增加而线性增加。1200℃烧结BST-BiMT-0.1和BST-BiMT-0.075陶瓷在25 kV/cm下的储能密度和效率C分别为141.2mJ/cm3和79.3%,158.1mJ/cm3和76.7%,超过了许多最近报道的铁电/反铁电陶瓷的值。低电场条件下储能密度和效率的提高可归因于细极化电场滞回线、高密度伴随亚微米晶粒形貌和纯钙钛矿结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced low electric-field energy-storage performance in Ba0.9Sr0.1TiO3-Bi(Mg1/2Ti1/2)O3 ceramics
Perovskite (1-x)Ba0.9Sr0.1TiO3-xBi(Mg1/2Ti1/2)O3 (BST-BiMT-x) ceramics were prepared by sintering the corresponding powders synthesized by combining of solid state reaction method with citrate sol-gel and selfcombustion techniques. Submicron grains morphology, high density and large resistivity were obtained in the BST-BiMT-x ceramics. In addition, the BST-BiMT-0.1 and BST-BiMT-0.075 ceramics exhibit ferroelectric hysteresis loops with slim shape which lead to enhanced energy-storage properties. The energy-storage density of these two ceramics increases almost linearly with increasing the applied electric filed. The energy-storage density and efficiency at 25 kV/cm of the BST-BiMT-0.1 and BST-BiMT-0.075 ceramics sintered at 1200?C are 141.2mJ/cm3 and 79.3%, and 158.1mJ/cm3 and 76.7%, respectively, surpassing many recently reported values for ferroelectric/antiferroelectric ceramics. The enhanced energy-storage density and efficiency under low electric field can be attributed to the slim polarization-electric field hysteresis loops, high density accompanied by submicron grains morphology and pure perovskite structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Processing and Application of Ceramics
Processing and Application of Ceramics MATERIALS SCIENCE, CERAMICS-
CiteScore
1.90
自引率
9.10%
发文量
14
审稿时长
10 weeks
期刊介绍: Information not localized
期刊最新文献
Viscosity optimisation of photosensitive al2o3 slurry for stereolithography based additive manufacturing Comments on the paper “Structure, electric and dielectric properties of PbFe1/3Ti1/3W1/3O3 single perovskite compound” by P.G.R. Achary, R.N.P. Choudhary, S.K. Parida, published in Processing and Application of Ceramics 14 (2020) 146-153 Theoretical prediction by DFT on properties of β′-SrTa2O6 crystal Production of tib2 coatings on graphite substrates by electrophoretic deposition in NaF-AlF3 melt Use of cobalt ferrite and activated carbon in supercapacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1