改性Pechini法合成粉体制备CaMnO3陶瓷的热电性能

IF 0.9 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Processing and Application of Ceramics Pub Date : 2022-01-01 DOI:10.2298/pac2202115t
S. Torres, J. Rosa, D. Thomazini, M. Gelfuso
{"title":"改性Pechini法合成粉体制备CaMnO3陶瓷的热电性能","authors":"S. Torres, J. Rosa, D. Thomazini, M. Gelfuso","doi":"10.2298/pac2202115t","DOIUrl":null,"url":null,"abstract":"Calcium manganate (CMO) is a promising n-type semiconductor for thermoelectric applications due to its intrinsic properties. Still, these properties are highly dependent on the processing route used to produce these materials. In this work, properties of the polycrystalline CMO ceramics are reported by studying samples obtained from powders synthesized by a modified Pechini method and sintered at 1543K for 1, 3, 6, 12 and 24 h. Crystallographic parameters of the resulting phases were determined from X-ray diffraction patterns. The ceramics sintered for 6 h has the highest density (94.8%TD), while the CMO-1h sample (sintered only 1 h) presented the lowest density (77.2%TD) due to a large amount of secondary phase and short sintering time. The crystallite sizes of the CMO particles reached 49.2 nm; meanwhile, the grain sizes were in the range from 1.04 to 4.85 ?m. Seebeck coefficient has a negative value, characterizing an n-type material, and its value approached ?350 ?V/K at 873K. The sample sintered for 1 h has the lowest value of thermal conductivity (3.3W/mK), while the ceramics sintered for 3 h reached maximum electrical conductivity value (1830 S/m), both at 873K. In addition, this high conductivity of the ceramics sintered for 3 h contributed to it having the highest ZT value of about 0.039.","PeriodicalId":20596,"journal":{"name":"Processing and Application of Ceramics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Thermoelectric properties of CaMnO3 ceramics produced by using powder synthesized by modified Pechini method\",\"authors\":\"S. Torres, J. Rosa, D. Thomazini, M. Gelfuso\",\"doi\":\"10.2298/pac2202115t\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Calcium manganate (CMO) is a promising n-type semiconductor for thermoelectric applications due to its intrinsic properties. Still, these properties are highly dependent on the processing route used to produce these materials. In this work, properties of the polycrystalline CMO ceramics are reported by studying samples obtained from powders synthesized by a modified Pechini method and sintered at 1543K for 1, 3, 6, 12 and 24 h. Crystallographic parameters of the resulting phases were determined from X-ray diffraction patterns. The ceramics sintered for 6 h has the highest density (94.8%TD), while the CMO-1h sample (sintered only 1 h) presented the lowest density (77.2%TD) due to a large amount of secondary phase and short sintering time. The crystallite sizes of the CMO particles reached 49.2 nm; meanwhile, the grain sizes were in the range from 1.04 to 4.85 ?m. Seebeck coefficient has a negative value, characterizing an n-type material, and its value approached ?350 ?V/K at 873K. The sample sintered for 1 h has the lowest value of thermal conductivity (3.3W/mK), while the ceramics sintered for 3 h reached maximum electrical conductivity value (1830 S/m), both at 873K. In addition, this high conductivity of the ceramics sintered for 3 h contributed to it having the highest ZT value of about 0.039.\",\"PeriodicalId\":20596,\"journal\":{\"name\":\"Processing and Application of Ceramics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Processing and Application of Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/pac2202115t\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Processing and Application of Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/pac2202115t","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 2

摘要

锰酸钙(CMO)是一种很有前途的热电n型半导体材料。尽管如此,这些特性高度依赖于用于生产这些材料的加工路线。本文研究了用改进的Pechini方法合成的粉末,在1543K下烧结1、3、6、12和24小时,得到的CMO多晶陶瓷的性能。通过x射线衍射图确定了所得相的晶体学参数。烧结时间为6 h的陶瓷密度最高(94.8%TD),而烧结时间为1h的CMO-1h样品密度最低(77.2%TD),主要是由于二次相较多,烧结时间短。CMO颗粒的晶粒尺寸达到49.2 nm;晶粒尺寸在1.04 ~ 4.85 μ m之间。塞贝克系数为负值,为n型材料,873K时塞贝克系数接近350v /K。烧结1h试样的导热系数最低(3.3W/mK),烧结3h陶瓷的导热系数最高(1830 S/m),均为873K。此外,烧结3 h的陶瓷的高导电性使其ZT值最高,约为0.039。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermoelectric properties of CaMnO3 ceramics produced by using powder synthesized by modified Pechini method
Calcium manganate (CMO) is a promising n-type semiconductor for thermoelectric applications due to its intrinsic properties. Still, these properties are highly dependent on the processing route used to produce these materials. In this work, properties of the polycrystalline CMO ceramics are reported by studying samples obtained from powders synthesized by a modified Pechini method and sintered at 1543K for 1, 3, 6, 12 and 24 h. Crystallographic parameters of the resulting phases were determined from X-ray diffraction patterns. The ceramics sintered for 6 h has the highest density (94.8%TD), while the CMO-1h sample (sintered only 1 h) presented the lowest density (77.2%TD) due to a large amount of secondary phase and short sintering time. The crystallite sizes of the CMO particles reached 49.2 nm; meanwhile, the grain sizes were in the range from 1.04 to 4.85 ?m. Seebeck coefficient has a negative value, characterizing an n-type material, and its value approached ?350 ?V/K at 873K. The sample sintered for 1 h has the lowest value of thermal conductivity (3.3W/mK), while the ceramics sintered for 3 h reached maximum electrical conductivity value (1830 S/m), both at 873K. In addition, this high conductivity of the ceramics sintered for 3 h contributed to it having the highest ZT value of about 0.039.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Processing and Application of Ceramics
Processing and Application of Ceramics MATERIALS SCIENCE, CERAMICS-
CiteScore
1.90
自引率
9.10%
发文量
14
审稿时长
10 weeks
期刊介绍: Information not localized
期刊最新文献
Viscosity optimisation of photosensitive al2o3 slurry for stereolithography based additive manufacturing Comments on the paper “Structure, electric and dielectric properties of PbFe1/3Ti1/3W1/3O3 single perovskite compound” by P.G.R. Achary, R.N.P. Choudhary, S.K. Parida, published in Processing and Application of Ceramics 14 (2020) 146-153 Theoretical prediction by DFT on properties of β′-SrTa2O6 crystal Production of tib2 coatings on graphite substrates by electrophoretic deposition in NaF-AlF3 melt Use of cobalt ferrite and activated carbon in supercapacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1