Xiaopeng Chang, Na Xu, Zhifeng Liu, Shuo Tian, Dekai Wen, Wanjiang Zheng, De-ming Wang
{"title":"量子点敏化太阳能电池对电极g-C3N4/ cu膜的制备及性能","authors":"Xiaopeng Chang, Na Xu, Zhifeng Liu, Shuo Tian, Dekai Wen, Wanjiang Zheng, De-ming Wang","doi":"10.2298/pac2202167c","DOIUrl":null,"url":null,"abstract":"In this work g-C3N4/CuS composite film was prepared by successive ion layer adsorption and reaction (SILAR) method and used as the counter electrode in quantum dot sensitized solar cell (QDSSCs). To configure the cell, CdSe and CdS quantum dots acted as sensitizers on the photoanode side, polysulphide was used as the electrolyte and copper sulphide was deposited into the g-C3N4 film structure on the counter electrode side. Scanning electron microscope and X-ray diffraction were used to characterize the morphology and structure of the electrode materials, respectively. The photovoltaic performance of the cell was analysed by a standard solar simulator. The results revealed that the photoelectric conversion efficiency of the cell reached 3.65% under condition of AM 1.5 and irradiation intensity of 100mW/cm2.","PeriodicalId":20596,"journal":{"name":"Processing and Application of Ceramics","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and performance of g-C3N4/CuS film as counter electrode for quantum dot sensitized solar cells\",\"authors\":\"Xiaopeng Chang, Na Xu, Zhifeng Liu, Shuo Tian, Dekai Wen, Wanjiang Zheng, De-ming Wang\",\"doi\":\"10.2298/pac2202167c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work g-C3N4/CuS composite film was prepared by successive ion layer adsorption and reaction (SILAR) method and used as the counter electrode in quantum dot sensitized solar cell (QDSSCs). To configure the cell, CdSe and CdS quantum dots acted as sensitizers on the photoanode side, polysulphide was used as the electrolyte and copper sulphide was deposited into the g-C3N4 film structure on the counter electrode side. Scanning electron microscope and X-ray diffraction were used to characterize the morphology and structure of the electrode materials, respectively. The photovoltaic performance of the cell was analysed by a standard solar simulator. The results revealed that the photoelectric conversion efficiency of the cell reached 3.65% under condition of AM 1.5 and irradiation intensity of 100mW/cm2.\",\"PeriodicalId\":20596,\"journal\":{\"name\":\"Processing and Application of Ceramics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Processing and Application of Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/pac2202167c\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Processing and Application of Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/pac2202167c","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Preparation and performance of g-C3N4/CuS film as counter electrode for quantum dot sensitized solar cells
In this work g-C3N4/CuS composite film was prepared by successive ion layer adsorption and reaction (SILAR) method and used as the counter electrode in quantum dot sensitized solar cell (QDSSCs). To configure the cell, CdSe and CdS quantum dots acted as sensitizers on the photoanode side, polysulphide was used as the electrolyte and copper sulphide was deposited into the g-C3N4 film structure on the counter electrode side. Scanning electron microscope and X-ray diffraction were used to characterize the morphology and structure of the electrode materials, respectively. The photovoltaic performance of the cell was analysed by a standard solar simulator. The results revealed that the photoelectric conversion efficiency of the cell reached 3.65% under condition of AM 1.5 and irradiation intensity of 100mW/cm2.