Fatemeh Bavarsiha, Saeideh Dadashian, M. Montazeri-Pour, Fardin Ghasemy-Piranloo, M. Rajabi
{"title":"Fe3O4/SiO2/TiO2、SrFe12O19/SiO2/TiO2和Fe3O4/SiO2/ZnO核/壳/壳纳米结构的合成、表征及光催化效率","authors":"Fatemeh Bavarsiha, Saeideh Dadashian, M. Montazeri-Pour, Fardin Ghasemy-Piranloo, M. Rajabi","doi":"10.2298/pac2203291b","DOIUrl":null,"url":null,"abstract":"In this research, three magnetically separable photocatalysts, Fe3O4/SiO2/TiO2, SrFe12O19/SiO2/TiO2 and Fe3O4/SiO2/ZnO, with core/shell/shell structures were successfully prepared. In the first step, soft magnetic and hard magnetic Fe3O4 and SrFe12O19 powders were synthesized using carbon reduction and co-precipitation routes, respectively. In the second step, silica coating was performed by controlling the hydrolysis and con- densation of tetraethyl orthosilicate (TEOS) precursor on the magnetic cores. In the third step, a layer of TiO2 or ZnO photocatalytic shells was made on the as-prepared composites using titanium n-butoxide (TNBT) or zinc nitrate hexahydrate, respectively. The formation of the core/shell/shell structures was confirmed by FESEM and TEM analyses. The saturation magnetizations of the Fe3O4/SiO2/TiO2, SrFe12O19/SiO2/TiO2 and Fe3O4/SiO2/ZnO photocatalytic materials were 41.5, 33 and 49 emu/g, respectively. Photocatalytic activity was evaluated by degradation percentages of methylene blue (MB) under UV illumination, which were 88%, 83% and 62%, for the Fe3O4/SiO2/TiO2, SrFe12O19//TiO2 and Fe3O4/SiO2/ZnO composites, respectively. The first-, and second-order reaction kinetics were used to find out the suitable MB removal kinetics.","PeriodicalId":20596,"journal":{"name":"Processing and Application of Ceramics","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, characterization and photocatalytic efficiency of Fe3O4/SiO2/TiO2, SrFe12O19/SiO2/TiO2 and Fe3O4/SiO2/ZnO core/shell/shell nanostructures\",\"authors\":\"Fatemeh Bavarsiha, Saeideh Dadashian, M. Montazeri-Pour, Fardin Ghasemy-Piranloo, M. Rajabi\",\"doi\":\"10.2298/pac2203291b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, three magnetically separable photocatalysts, Fe3O4/SiO2/TiO2, SrFe12O19/SiO2/TiO2 and Fe3O4/SiO2/ZnO, with core/shell/shell structures were successfully prepared. In the first step, soft magnetic and hard magnetic Fe3O4 and SrFe12O19 powders were synthesized using carbon reduction and co-precipitation routes, respectively. In the second step, silica coating was performed by controlling the hydrolysis and con- densation of tetraethyl orthosilicate (TEOS) precursor on the magnetic cores. In the third step, a layer of TiO2 or ZnO photocatalytic shells was made on the as-prepared composites using titanium n-butoxide (TNBT) or zinc nitrate hexahydrate, respectively. The formation of the core/shell/shell structures was confirmed by FESEM and TEM analyses. The saturation magnetizations of the Fe3O4/SiO2/TiO2, SrFe12O19/SiO2/TiO2 and Fe3O4/SiO2/ZnO photocatalytic materials were 41.5, 33 and 49 emu/g, respectively. Photocatalytic activity was evaluated by degradation percentages of methylene blue (MB) under UV illumination, which were 88%, 83% and 62%, for the Fe3O4/SiO2/TiO2, SrFe12O19//TiO2 and Fe3O4/SiO2/ZnO composites, respectively. The first-, and second-order reaction kinetics were used to find out the suitable MB removal kinetics.\",\"PeriodicalId\":20596,\"journal\":{\"name\":\"Processing and Application of Ceramics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Processing and Application of Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/pac2203291b\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Processing and Application of Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/pac2203291b","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Synthesis, characterization and photocatalytic efficiency of Fe3O4/SiO2/TiO2, SrFe12O19/SiO2/TiO2 and Fe3O4/SiO2/ZnO core/shell/shell nanostructures
In this research, three magnetically separable photocatalysts, Fe3O4/SiO2/TiO2, SrFe12O19/SiO2/TiO2 and Fe3O4/SiO2/ZnO, with core/shell/shell structures were successfully prepared. In the first step, soft magnetic and hard magnetic Fe3O4 and SrFe12O19 powders were synthesized using carbon reduction and co-precipitation routes, respectively. In the second step, silica coating was performed by controlling the hydrolysis and con- densation of tetraethyl orthosilicate (TEOS) precursor on the magnetic cores. In the third step, a layer of TiO2 or ZnO photocatalytic shells was made on the as-prepared composites using titanium n-butoxide (TNBT) or zinc nitrate hexahydrate, respectively. The formation of the core/shell/shell structures was confirmed by FESEM and TEM analyses. The saturation magnetizations of the Fe3O4/SiO2/TiO2, SrFe12O19/SiO2/TiO2 and Fe3O4/SiO2/ZnO photocatalytic materials were 41.5, 33 and 49 emu/g, respectively. Photocatalytic activity was evaluated by degradation percentages of methylene blue (MB) under UV illumination, which were 88%, 83% and 62%, for the Fe3O4/SiO2/TiO2, SrFe12O19//TiO2 and Fe3O4/SiO2/ZnO composites, respectively. The first-, and second-order reaction kinetics were used to find out the suitable MB removal kinetics.