碳纤维的加入增强了BiFeO3的挥发性有机化合物感测性能

IF 0.9 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Processing and Application of Ceramics Pub Date : 2022-01-01 DOI:10.2298/pac2204310o
M. Oughanem, R. Douani, N. Lamrani, Y. Guhel, A. Chaouchi, B. Boudart
{"title":"碳纤维的加入增强了BiFeO3的挥发性有机化合物感测性能","authors":"M. Oughanem, R. Douani, N. Lamrani, Y. Guhel, A. Chaouchi, B. Boudart","doi":"10.2298/pac2204310o","DOIUrl":null,"url":null,"abstract":"In the present work, pure BiFeO3 (BFO) particles were synthesized by sol-gel method and mixed with carbon fibre to form composites (x%CFs-BFO, where x corresponds to 0, 4, 8 and 10 wt.%) by hydrothermal treatment at 150?C. The resulting composite powders were characterized by X-ray diffraction, Raman spectroscopy, nitrogen adsorption/desorption isotherm and scanning electron microscopy (SEM-EDX). The synthesized powders were used for gas sensors preparation by manual deposition of their mixture with polyvinyl alcohol on alumina tubes ending with two silver electrodes. The impedance of the sensitive layers was determined by impedance spectroscopy in the temperature range 100-250?C at different gaseous concentrations. The detection properties of the fabricated sensors for various volatile organic compounds were investigated. The sensors showed better sensitivity to acetone compared to other gases. The addition of carbon fibres improved the sensitivity to acetone vapour from 64 to 135% at 100 ppm and reduced the optimum operating temperature of the sensors by 20?C and the response and recovery times from (26 s/15 s) to (18 s/10 s). This study revealed that x%CFs-BiFeO3 composites are promising candidates for gas sensors.","PeriodicalId":20596,"journal":{"name":"Processing and Application of Ceramics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhanced volatile organic compound sensing properties of BiFeO3 by carbon fibres addition\",\"authors\":\"M. Oughanem, R. Douani, N. Lamrani, Y. Guhel, A. Chaouchi, B. Boudart\",\"doi\":\"10.2298/pac2204310o\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present work, pure BiFeO3 (BFO) particles were synthesized by sol-gel method and mixed with carbon fibre to form composites (x%CFs-BFO, where x corresponds to 0, 4, 8 and 10 wt.%) by hydrothermal treatment at 150?C. The resulting composite powders were characterized by X-ray diffraction, Raman spectroscopy, nitrogen adsorption/desorption isotherm and scanning electron microscopy (SEM-EDX). The synthesized powders were used for gas sensors preparation by manual deposition of their mixture with polyvinyl alcohol on alumina tubes ending with two silver electrodes. The impedance of the sensitive layers was determined by impedance spectroscopy in the temperature range 100-250?C at different gaseous concentrations. The detection properties of the fabricated sensors for various volatile organic compounds were investigated. The sensors showed better sensitivity to acetone compared to other gases. The addition of carbon fibres improved the sensitivity to acetone vapour from 64 to 135% at 100 ppm and reduced the optimum operating temperature of the sensors by 20?C and the response and recovery times from (26 s/15 s) to (18 s/10 s). This study revealed that x%CFs-BiFeO3 composites are promising candidates for gas sensors.\",\"PeriodicalId\":20596,\"journal\":{\"name\":\"Processing and Application of Ceramics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Processing and Application of Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/pac2204310o\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Processing and Application of Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/pac2204310o","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 1

摘要

在本研究中,采用溶胶-凝胶法合成了纯BiFeO3 (BFO)颗粒,并与碳纤维混合形成复合材料(x%CFs-BFO,其中x对应0、4、8和10 wt.%),在150℃下进行水热处理。采用x射线衍射、拉曼光谱、氮吸附/脱附等温线和扫描电镜(SEM-EDX)对复合粉末进行了表征。将合成的粉末与聚乙烯醇混合,人工沉积在以两个银电极结尾的氧化铝管上,用于气体传感器的制备。用阻抗谱法测定了敏感层在100 ~ 250℃温度范围内的阻抗。不同气体浓度下的C。研究了该传感器对多种挥发性有机化合物的检测性能。与其他气体相比,传感器对丙酮的敏感度更高。在100 ppm下,碳纤维的加入将对丙酮蒸汽的灵敏度从64%提高到135%,并将传感器的最佳工作温度降低了20?响应和恢复时间从(26 s/15 s)到(18 s/10 s)。该研究表明,x%CFs-BiFeO3复合材料是气体传感器的理想候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced volatile organic compound sensing properties of BiFeO3 by carbon fibres addition
In the present work, pure BiFeO3 (BFO) particles were synthesized by sol-gel method and mixed with carbon fibre to form composites (x%CFs-BFO, where x corresponds to 0, 4, 8 and 10 wt.%) by hydrothermal treatment at 150?C. The resulting composite powders were characterized by X-ray diffraction, Raman spectroscopy, nitrogen adsorption/desorption isotherm and scanning electron microscopy (SEM-EDX). The synthesized powders were used for gas sensors preparation by manual deposition of their mixture with polyvinyl alcohol on alumina tubes ending with two silver electrodes. The impedance of the sensitive layers was determined by impedance spectroscopy in the temperature range 100-250?C at different gaseous concentrations. The detection properties of the fabricated sensors for various volatile organic compounds were investigated. The sensors showed better sensitivity to acetone compared to other gases. The addition of carbon fibres improved the sensitivity to acetone vapour from 64 to 135% at 100 ppm and reduced the optimum operating temperature of the sensors by 20?C and the response and recovery times from (26 s/15 s) to (18 s/10 s). This study revealed that x%CFs-BiFeO3 composites are promising candidates for gas sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Processing and Application of Ceramics
Processing and Application of Ceramics MATERIALS SCIENCE, CERAMICS-
CiteScore
1.90
自引率
9.10%
发文量
14
审稿时长
10 weeks
期刊介绍: Information not localized
期刊最新文献
Viscosity optimisation of photosensitive al2o3 slurry for stereolithography based additive manufacturing Comments on the paper “Structure, electric and dielectric properties of PbFe1/3Ti1/3W1/3O3 single perovskite compound” by P.G.R. Achary, R.N.P. Choudhary, S.K. Parida, published in Processing and Application of Ceramics 14 (2020) 146-153 Theoretical prediction by DFT on properties of β′-SrTa2O6 crystal Production of tib2 coatings on graphite substrates by electrophoretic deposition in NaF-AlF3 melt Use of cobalt ferrite and activated carbon in supercapacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1