聚合物合成路线和有机组分含量对碳化硅陶瓷结构和孔隙率的影响

IF 0.9 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Processing and Application of Ceramics Pub Date : 2023-01-01 DOI:10.2298/pac2302118c
B. Costa, M.I.A. De Silva, C. Tarley, E. Ribeiro, M. Segatelli
{"title":"聚合物合成路线和有机组分含量对碳化硅陶瓷结构和孔隙率的影响","authors":"B. Costa, M.I.A. De Silva, C. Tarley, E. Ribeiro, M. Segatelli","doi":"10.2298/pac2302118c","DOIUrl":null,"url":null,"abstract":"This paper describes the structural and textural characteristics of silicon oxycarbide ceramics obtained from three different hybrid polymers by varying pyrolysis temperature. The first polymer was prepared by hydrosilylation between poly(hydromethylsiloxane) and divinylbenzene in stoichiometric proportions; the second was similarly obtained, but with excess of divinylbenzene (60 wt.%) and the third was also synthesized with 60 wt.% divinylbenzene, involving simultaneously hydrosilylation and radical reactions. Precursors were pyrolysed under argon at 1000, 1200 and 1500?C to produce silicon oxycarbide-based ceramics. Silicon carbide phase development and devitrification resistance were influenced by the disordered and ordered residual carbon fraction, which was directly related to the polymer structure. High specific surface area and pore volume values were obtained in C-richer ceramics at 1500?C derived from poly(divinylbenzene) network-containing precursor. Silicon oxycarbide matrices, derived from hybrid polymers containing graphitic carbon and silicon carbide phases together with different amount of porosity, revealed desirable features for electrochemical applications and adsorbent systems.","PeriodicalId":20596,"journal":{"name":"Processing and Application of Ceramics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of polymer synthesis route and organic fraction content on structure and porosity of silicon oxycarbide ceramics\",\"authors\":\"B. Costa, M.I.A. De Silva, C. Tarley, E. Ribeiro, M. Segatelli\",\"doi\":\"10.2298/pac2302118c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the structural and textural characteristics of silicon oxycarbide ceramics obtained from three different hybrid polymers by varying pyrolysis temperature. The first polymer was prepared by hydrosilylation between poly(hydromethylsiloxane) and divinylbenzene in stoichiometric proportions; the second was similarly obtained, but with excess of divinylbenzene (60 wt.%) and the third was also synthesized with 60 wt.% divinylbenzene, involving simultaneously hydrosilylation and radical reactions. Precursors were pyrolysed under argon at 1000, 1200 and 1500?C to produce silicon oxycarbide-based ceramics. Silicon carbide phase development and devitrification resistance were influenced by the disordered and ordered residual carbon fraction, which was directly related to the polymer structure. High specific surface area and pore volume values were obtained in C-richer ceramics at 1500?C derived from poly(divinylbenzene) network-containing precursor. Silicon oxycarbide matrices, derived from hybrid polymers containing graphitic carbon and silicon carbide phases together with different amount of porosity, revealed desirable features for electrochemical applications and adsorbent systems.\",\"PeriodicalId\":20596,\"journal\":{\"name\":\"Processing and Application of Ceramics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Processing and Application of Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/pac2302118c\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Processing and Application of Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/pac2302118c","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了由三种不同的杂化聚合物通过不同的热解温度制备的碳化硅陶瓷的结构和结构特征。第一种聚合物是由聚氢甲基硅氧烷和二乙烯基苯按化学计量比例进行硅氢化反应制备的;第二种合成方法类似,但加入了过量的二乙烯基苯(60 wt.%),第三种合成方法也加入了60 wt.%的二乙烯基苯,同时进行了硅氢化反应和自由基反应。前驱体在1000、1200和1500℃氩气下进行热解。C生产碳化硅基陶瓷。无序和有序残余碳分数影响碳化硅相发育和反硝化阻力,而有序残余碳分数与聚合物结构直接相关。富c陶瓷在1500℃时获得了较高的比表面积和孔体积值。由含聚二乙烯基苯网络的前驱体衍生而来。碳化硅氧基是由含有石墨碳相和碳化硅相以及不同孔隙率的杂化聚合物衍生而来,揭示了电化学应用和吸附剂系统的理想特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of polymer synthesis route and organic fraction content on structure and porosity of silicon oxycarbide ceramics
This paper describes the structural and textural characteristics of silicon oxycarbide ceramics obtained from three different hybrid polymers by varying pyrolysis temperature. The first polymer was prepared by hydrosilylation between poly(hydromethylsiloxane) and divinylbenzene in stoichiometric proportions; the second was similarly obtained, but with excess of divinylbenzene (60 wt.%) and the third was also synthesized with 60 wt.% divinylbenzene, involving simultaneously hydrosilylation and radical reactions. Precursors were pyrolysed under argon at 1000, 1200 and 1500?C to produce silicon oxycarbide-based ceramics. Silicon carbide phase development and devitrification resistance were influenced by the disordered and ordered residual carbon fraction, which was directly related to the polymer structure. High specific surface area and pore volume values were obtained in C-richer ceramics at 1500?C derived from poly(divinylbenzene) network-containing precursor. Silicon oxycarbide matrices, derived from hybrid polymers containing graphitic carbon and silicon carbide phases together with different amount of porosity, revealed desirable features for electrochemical applications and adsorbent systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Processing and Application of Ceramics
Processing and Application of Ceramics MATERIALS SCIENCE, CERAMICS-
CiteScore
1.90
自引率
9.10%
发文量
14
审稿时长
10 weeks
期刊介绍: Information not localized
期刊最新文献
Viscosity optimisation of photosensitive al2o3 slurry for stereolithography based additive manufacturing Comments on the paper “Structure, electric and dielectric properties of PbFe1/3Ti1/3W1/3O3 single perovskite compound” by P.G.R. Achary, R.N.P. Choudhary, S.K. Parida, published in Processing and Application of Ceramics 14 (2020) 146-153 Theoretical prediction by DFT on properties of β′-SrTa2O6 crystal Production of tib2 coatings on graphite substrates by electrophoretic deposition in NaF-AlF3 melt Use of cobalt ferrite and activated carbon in supercapacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1