用人工神经网络对小行星族进行分类

IF 0.8 4区 物理与天体物理 Q4 ASTRONOMY & ASTROPHYSICS Serbian Astronomical Journal Pub Date : 2020-01-01 DOI:10.2298/saj2001039v
D. Vujičić, R. Pavlović, D. Milosevic, B. Djordjevic, S. Randjić, Dijana Stojić
{"title":"用人工神经网络对小行星族进行分类","authors":"D. Vujičić, R. Pavlović, D. Milosevic, B. Djordjevic, S. Randjić, Dijana Stojić","doi":"10.2298/saj2001039v","DOIUrl":null,"url":null,"abstract":"This paper describes an artificial neural network for classification of asteroids into families. The data used for artificial neural network training and testing were obtained by the Hierarchical Clustering Method (HCM). We have shown that an artificial neural networks can be used as a validation method for the HCM on families with a large number of members.","PeriodicalId":48878,"journal":{"name":"Serbian Astronomical Journal","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Classification of asteroid families with artificial neural networks\",\"authors\":\"D. Vujičić, R. Pavlović, D. Milosevic, B. Djordjevic, S. Randjić, Dijana Stojić\",\"doi\":\"10.2298/saj2001039v\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an artificial neural network for classification of asteroids into families. The data used for artificial neural network training and testing were obtained by the Hierarchical Clustering Method (HCM). We have shown that an artificial neural networks can be used as a validation method for the HCM on families with a large number of members.\",\"PeriodicalId\":48878,\"journal\":{\"name\":\"Serbian Astronomical Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Serbian Astronomical Journal\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.2298/saj2001039v\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Serbian Astronomical Journal","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.2298/saj2001039v","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了一种用于小行星科分类的人工神经网络。采用层次聚类方法(HCM)获得用于人工神经网络训练和测试的数据。我们已经证明了人工神经网络可以作为一种验证方法,用于具有大量成员的家庭的HCM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of asteroid families with artificial neural networks
This paper describes an artificial neural network for classification of asteroids into families. The data used for artificial neural network training and testing were obtained by the Hierarchical Clustering Method (HCM). We have shown that an artificial neural networks can be used as a validation method for the HCM on families with a large number of members.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Serbian Astronomical Journal
Serbian Astronomical Journal ASTRONOMY & ASTROPHYSICS-
CiteScore
1.00
自引率
0.00%
发文量
6
审稿时长
12 weeks
期刊介绍: Serbian Astronomical Journal publishes original observations and researches in all branches of astronomy. The journal publishes: Invited Reviews - review article on some up-to-date topic in astronomy, astrophysics and related fields (written upon invitation only), Original Scientific Papers - article in which are presented previously unpublished author''s own scientific results, Preliminary Reports - original scientific paper, but shorter in length and of preliminary nature, Professional Papers - articles offering experience useful for the improvement of professional practice i.e. article describing methods and techniques, software, presenting observational data, etc. In some cases the journal may publish other contributions, such as In Memoriam notes, Obituaries, Book Reviews, as well as Editorials, Addenda, Errata, Corrigenda, Retraction notes, etc.
期刊最新文献
A potential survival strategy during the late heavy bombardment Newly found Mayan records of astronomical phenomena in Dresden Codex A search for fast radio bursts associated with gamma-ray bursts using the YNAO 40-m radio telescope The influence of metallicity on helium and CO core masses in massive stars Astronomical observatory site selection using fuzzy AHP and BWM methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1