{"title":"复杂交通环境下基于车联网和区块链的驾驶引导策略","authors":"Yuchuan Fu, Changle Li, T. Luan, Yao Zhang","doi":"10.23919/jcc.ea.2020-0174.202302","DOIUrl":null,"url":null,"abstract":"Diversified traffic participants and complex traffic environment (e.g., roadblocks or road damage exist) challenge the decision-making accuracy of a single connected and autonomous vehicle (CAV) due to its limited sensing and computing capabilities. Using Internet of Vehicles (IoV) to share driving rules between CAVs can break limitations of a single CAV, but at the same time may cause privacy and safety issues. To tackle this problem, this paper proposes to combine IoV and blockchain technologies to form an efficient and accurate autonomous guidance strategy. Specifically, we first use reinforcement learning for driving decision learning, and give the corresponding driving rule extraction method. Then, an architecture combining IoV and blockchain is designed to ensure secure driving rule sharing. Finally, the shared rules will form an effective autonomous driving guidance strategy through driving rules selection and action selection. Extensive simulation proves that the proposed strategy performs well in complex traffic environment, mainly in terms of accuracy, safety, and robustness.","PeriodicalId":9814,"journal":{"name":"China Communications","volume":"1 1","pages":"230-243"},"PeriodicalIF":3.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IoV and blockchain-enabled driving guidance strategy in complex traffic environment\",\"authors\":\"Yuchuan Fu, Changle Li, T. Luan, Yao Zhang\",\"doi\":\"10.23919/jcc.ea.2020-0174.202302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diversified traffic participants and complex traffic environment (e.g., roadblocks or road damage exist) challenge the decision-making accuracy of a single connected and autonomous vehicle (CAV) due to its limited sensing and computing capabilities. Using Internet of Vehicles (IoV) to share driving rules between CAVs can break limitations of a single CAV, but at the same time may cause privacy and safety issues. To tackle this problem, this paper proposes to combine IoV and blockchain technologies to form an efficient and accurate autonomous guidance strategy. Specifically, we first use reinforcement learning for driving decision learning, and give the corresponding driving rule extraction method. Then, an architecture combining IoV and blockchain is designed to ensure secure driving rule sharing. Finally, the shared rules will form an effective autonomous driving guidance strategy through driving rules selection and action selection. Extensive simulation proves that the proposed strategy performs well in complex traffic environment, mainly in terms of accuracy, safety, and robustness.\",\"PeriodicalId\":9814,\"journal\":{\"name\":\"China Communications\",\"volume\":\"1 1\",\"pages\":\"230-243\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.23919/jcc.ea.2020-0174.202302\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.23919/jcc.ea.2020-0174.202302","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
IoV and blockchain-enabled driving guidance strategy in complex traffic environment
Diversified traffic participants and complex traffic environment (e.g., roadblocks or road damage exist) challenge the decision-making accuracy of a single connected and autonomous vehicle (CAV) due to its limited sensing and computing capabilities. Using Internet of Vehicles (IoV) to share driving rules between CAVs can break limitations of a single CAV, but at the same time may cause privacy and safety issues. To tackle this problem, this paper proposes to combine IoV and blockchain technologies to form an efficient and accurate autonomous guidance strategy. Specifically, we first use reinforcement learning for driving decision learning, and give the corresponding driving rule extraction method. Then, an architecture combining IoV and blockchain is designed to ensure secure driving rule sharing. Finally, the shared rules will form an effective autonomous driving guidance strategy through driving rules selection and action selection. Extensive simulation proves that the proposed strategy performs well in complex traffic environment, mainly in terms of accuracy, safety, and robustness.
期刊介绍:
China Communications (ISSN 1673-5447) is an English-language monthly journal cosponsored by the China Institute of Communications (CIC) and IEEE Communications Society (IEEE ComSoc). It is aimed at readers in industry, universities, research and development organizations, and government agencies in the field of Information and Communications Technologies (ICTs) worldwide.
The journal's main objective is to promote academic exchange in the ICTs sector and publish high-quality papers to contribute to the global ICTs industry. It provides instant access to the latest articles and papers, presenting leading-edge research achievements, tutorial overviews, and descriptions of significant practical applications of technology.
China Communications has been indexed in SCIE (Science Citation Index-Expanded) since January 2007. Additionally, all articles have been available in the IEEE Xplore digital library since January 2013.