{"title":"GARCH模型中基于卡尔曼滤波的似然函数数值优化","authors":"M. Benmoumen","doi":"10.23939/mmc2022.03.599","DOIUrl":null,"url":null,"abstract":"In this work, we propose a new estimate algorithm for the parameters of a GARCH(p,q) model. This algorithm turns out to be very reliable in estimating the true parameter’s values of a given model. It combines maximum likelihood method, Kalman filter algorithm and the simulated annealing (SA) method, without any assumptions about initial values. Simulation results demonstrate that the algorithm is liable and promising.","PeriodicalId":37156,"journal":{"name":"Mathematical Modeling and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical optimization of the likelihood function based on Kalman filter in the GARCH models\",\"authors\":\"M. Benmoumen\",\"doi\":\"10.23939/mmc2022.03.599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose a new estimate algorithm for the parameters of a GARCH(p,q) model. This algorithm turns out to be very reliable in estimating the true parameter’s values of a given model. It combines maximum likelihood method, Kalman filter algorithm and the simulated annealing (SA) method, without any assumptions about initial values. Simulation results demonstrate that the algorithm is liable and promising.\",\"PeriodicalId\":37156,\"journal\":{\"name\":\"Mathematical Modeling and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modeling and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23939/mmc2022.03.599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modeling and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/mmc2022.03.599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Numerical optimization of the likelihood function based on Kalman filter in the GARCH models
In this work, we propose a new estimate algorithm for the parameters of a GARCH(p,q) model. This algorithm turns out to be very reliable in estimating the true parameter’s values of a given model. It combines maximum likelihood method, Kalman filter algorithm and the simulated annealing (SA) method, without any assumptions about initial values. Simulation results demonstrate that the algorithm is liable and promising.