GARCH模型中基于卡尔曼滤波的似然函数数值优化

M. Benmoumen
{"title":"GARCH模型中基于卡尔曼滤波的似然函数数值优化","authors":"M. Benmoumen","doi":"10.23939/mmc2022.03.599","DOIUrl":null,"url":null,"abstract":"In this work, we propose a new estimate algorithm for the parameters of a GARCH(p,q) model. This algorithm turns out to be very reliable in estimating the true parameter’s values of a given model. It combines maximum likelihood method, Kalman filter algorithm and the simulated annealing (SA) method, without any assumptions about initial values. Simulation results demonstrate that the algorithm is liable and promising.","PeriodicalId":37156,"journal":{"name":"Mathematical Modeling and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical optimization of the likelihood function based on Kalman filter in the GARCH models\",\"authors\":\"M. Benmoumen\",\"doi\":\"10.23939/mmc2022.03.599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose a new estimate algorithm for the parameters of a GARCH(p,q) model. This algorithm turns out to be very reliable in estimating the true parameter’s values of a given model. It combines maximum likelihood method, Kalman filter algorithm and the simulated annealing (SA) method, without any assumptions about initial values. Simulation results demonstrate that the algorithm is liable and promising.\",\"PeriodicalId\":37156,\"journal\":{\"name\":\"Mathematical Modeling and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modeling and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23939/mmc2022.03.599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modeling and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/mmc2022.03.599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了一种新的GARCH(p,q)模型参数估计算法。结果表明,该算法在估计给定模型的真实参数值方面是非常可靠的。它结合了极大似然法、卡尔曼滤波算法和模拟退火(SA)方法,不需要对初始值做任何假设。仿真结果表明,该算法是可靠的,具有良好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical optimization of the likelihood function based on Kalman filter in the GARCH models
In this work, we propose a new estimate algorithm for the parameters of a GARCH(p,q) model. This algorithm turns out to be very reliable in estimating the true parameter’s values of a given model. It combines maximum likelihood method, Kalman filter algorithm and the simulated annealing (SA) method, without any assumptions about initial values. Simulation results demonstrate that the algorithm is liable and promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Modeling and Computing
Mathematical Modeling and Computing Computer Science-Computational Theory and Mathematics
CiteScore
1.60
自引率
0.00%
发文量
54
期刊最新文献
Analytical images of Kepler's equation solutions and their applications Fractional Brownian motion in financial engineering models Multi-criteria decision making based on novel distance measure in intuitionistic fuzzy environment Stability analysis of a fractional model for the transmission of the cochineal Modeling the financial flows impact on the diagnosis of an enterprise's economic security level
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1